首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of vacuolar acidification upon addition of ATP and/or pyrophosphate (PPi) has been assayed on single immobilized vacuoles by computer-aided microfluorimetry of 9-aminoacridine, and by acridine orange absorption photometry on vacuole suspensions isolated from green suspension cells of Chenopodium rubrum L. Two proton pumps at the tonoplast, an ATPase and a pyrophosphatase (PPase), operate in parallel to acidify the vacuole with different contributions adding up to a transtonoplast Δ pH of 2.6 pH units at external pH 7.2. The saturable components of proton pumping reach half maximal velocity with 0.32 ± 0.06 mM ATP and 23 ± 2.5 μM PPi, respectively. At saturating substrate concentrations, ATPase and PPase hydrolyse ATP and PPi, respectively, at a ratio of 2.3. The same ratio holds for the corresponding proton fluxes maintaining a given steady-state vacuolar pH. We conclude that both pumps operate at the same stoichiometry.  相似文献   

2.
《The Journal of cell biology》1993,121(6):1311-1327
Amoebae of the eukaryotic microorganism Dictyostelium discoideum were found to contain an interconnected array of tubules and cisternae whose membranes were studded with 15-nm-diameter "pegs." Comparison of the ultrastructure and freeze-fracture behavior of these pegs with similar structures found in other cells and tissues indicated that they were the head domains of vacuolar-type proton pumps. Supporting this identification, the pegs were observed to decorate and clump when broken amoebae were exposed to an antiserum against the B subunit of mammalian vacuolar H(+)-ATPase. The appearance of the peg-rich cisternae in quick-frozen amoebae depended on their osmotic environment: under hyperosmotic conditions, the cisternae were flat with many narrow tubular extensions, while under hypo-osmotic conditions the cisternae ranged from bulbous to spherical. In all cases, however, their contents deep etched like pure water. These properties indicated that the interconnected tubules and cisternae comprise the contractile vacuole system of Dictyostelium. Earlier studies had demonstrated that contractile vacuole membranes in Dictyostelium are extremely rich in calmodulin (Zhu, Q., and M. Clarke, 1992, J. Cell Biol. 118: 347-358). Light microscopic immunofluorescence confirmed that antibodies against the vacuolar proton pump colocalized with anti-calmodulin antibodies on these organelles. Time-lapse video recording of living amoebae imaged by interference-reflection microscopy, or by fluorescence microscopy after staining contractile vacuole membranes with potential-sensitive styryl dyes, revealed the extent and dynamic interrelationship of the cisternal and tubular elements in Dictyostelium's contractile vacuole system. The high density of proton pumps throughout its membranes suggests that the generation of a proton gradient is likely to be an important factor in the mechanism of fluid accumulation by contractile vacuoles.  相似文献   

3.
Triple-barrelled microelectrodes measuring K(+) activity (a(K)), pH and membrane potential were used to make quantitative measurements of vacuolar and cytosolic a(K) in epidermal and mesophyll cells of barley plants grown in nutrient solution with 0 or 200 mM added NaCl. Measurements of a(K) were assigned to the cytosol or vacuole based on the pH measured. In epidermal cells, the salt treatment decreased a(K) in the vacuole from 224 to 47 mM and in the cytosol from 68 to 15 mM. In contrast, the equivalent changes in the mesophyll were from 235 to 150 mM (vacuole) and 79 to 64 mM (cytosol). Thus mechanisms exist to ameliorate the effects of salt on a(K) in compartments of mesophyll cells, presumably to minimize any deleterious consequences for photosynthesis. Thermodynamic calculations showed that K(+) is actively transported into the vacuole of both epidermal and mesophyll cells of salinized and non- salinized plants. Comparison of the values of a(K) in K(+)-replete, non-salinized leaf cells with those previously measured in root cells of plants grown under comparable conditions indicates that cytosolic a(K) is similar in cells of both organs, but vacuolar a(K) in leaf cells is approximately twice that in roots. This suggests differences in the regulation of vacuolar a(K), but not cytosolic a(K), in leaf and root cells.  相似文献   

4.
The Pi concentration of Acer pseudoplatanus cells in the two major intracellular compartments, the cytoplasm and the vacuole, has been studied using 31P NMR. For sycamore cells containing approximately 2 mM of total Pi, the cytoplasmic Pi and the vacuolar Pi concentrations were approximately 6 and 1.5 mM, respectively. When the cells were transferred to a phosphate-deficient medium, the vacuolar Pi decreased rapidly while the cytoplasmic Pi decreased slowly during the first 48 h, indicating that Pi in the cytoplasm was maintained at the expense of the vacuolar Pi. When the Pi-starved cells (i.e., those containing less than 0.5 mumol of total Pi/g wet wt) were transferred to a medium containing 300 microM Pi, Pi entered the cells rapidly and accumulated in the cytoplasm. Once the cytoplasmic Pi pool was filled, Pi was taken up in the vacuole until the vacuole Pi pool was filled. On the contrary when the non-Pi-starved cells were transferred to a phosphate-rich medium (i.e., containing 45 mM Pi), Pi entered the cells slowly by diffusion and accumulated in the vacuole but not in the cytoplasm. These results demonstrate that the Pi content of the cytoplasm is maintained at the expense of the vacuolar Pi pool when sycamore cells are transferred to either a phosphate-deficient or a phosphate-rich medium.  相似文献   

5.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

6.
We show that the nitrate storing vacuole of the sulfide‐oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation.  相似文献   

7.
ATP-binding cassette (ABC) transporters are well known for their roles as multidrug resistance determinants but also play important roles in regulation of lipid levels. In the yeast Saccharomyces cerevisiae, the plasma membrane ABC transporter proteins Pdr5 and Yor1 are required for normal rates of transport of phosphatidyethanolamine to the surface of the cell. Loss of these ABC transporters causes a defect in phospholipid asymmetry across the plasma membrane and has been linked with slowed rates of trafficking of other membrane proteins. Four ABC transporter proteins are found on the limiting membrane of the yeast vacuole and loss of one of these vacuolar ABC transporters, Ybt1, caused a major defect in the normal delivery of the phosphatidylcholine (PC) analog NBD-PC (7-nitro-2,1,3-benzoxadiazol-PC) to the lumen of the vacuole. NBD-PC accumulates on cytosolic membranes in an ybt1Δ strain. We demonstrated that Ybt1 is required to import NBD-PC into vacuoles in the presence of ATP in vitro. Loss of Ybt1 prevented vacuolar remodeling of PC analogs. Turnover of Ybt1 was reduced under conditions in which function of this vacuolar remodeling pathway was required. Our data describe a novel vacuolar route for lipid remodeling and reutilization in addition to previously described enzymatic avenues in the cytoplasm.  相似文献   

8.
《Autophagy》2013,9(4):272-279
Vac8 is a yeast vacuolar membrane protein involved in vacuolar membrane dynamics, e.g., vacuole inheritance and vacuolar membrane fusion. This protein is also necessary for a subset of autophagic pathways that deliver specific cellular components to the vacuole. In this study, we show that the micropexohagy and vacuole inheritance required distinct domain structures of Pichia pastoris Vac8 (PpVac8). Whereas vacuole inheritance required the Armadillo repeat (ARM) region that resides in the middle part of the protein, micropexophagy did not. Deletion of both the ARM and C-terminal domains inhibited a characteristic of vacuolar dynamics during micropexophagy, i.e., formation of the vacuolar sequestering membrane (VSM). Subsequent analyses indicated that PpVAC8 disruption abolished recruitment of PpAtg11, another protein required for formation of the VSM, to the vacuolar membrane. These results present a novel molecular function of PpVac8 in micropexophagy.  相似文献   

9.
Using ion-selective microelectrodes, we measured the activity of H+, K+, Ca2+, and Cl- and the electrical potential both in the vacuole and in the cytoplasm of the unicellular green alga Eremosphaera viridis to obtain comparable values of the named parameters from the same object under identical conditions. The cytosol had a pH of 7.3, and activities of the other ions were 130 mM K+, 160 nM Ca2+, and 2.2 mM Cl-. We observed only small and transient light-dependent changes of the cytosolic Ca2+ activity. The vacuolar K+ activity did not differ significantly from the cytosolic one. The Ca2+ activity inside the vacuole was approximately 200 [mu]M, the pH was 5.0, and the Cl- activity was 6.2 mM. The concentrations of K+, Ca2+, and Cl- in cell extracts were measured by induction-coupled plasma spectroscopy and anion chromatography. This confirmed the vacuolar activities for K+ and Cl- obtained with ion-selective microelectrodes and indicated that approximately 60% of the vacuolar Ca2+ was buffered. The tonoplast potential was vanishingly low ([less than or equal to][plus or minus]2 mV). There was no detectable electrochemical potential gradient for K+ across the tonoplast, but there was, however, an obvious electrochemical potential gradient for Cl- (-26 mV), indicating an active accumulation of Cl- inside the vacuole.  相似文献   

10.
Vac8 is a yeast vacuolar membrane protein involved in vacuolar membrane dynamics, e.g., vacuole inheritance and vacuolar membrane fusion. This protein is also necessary for a subset of autophagic pathways that deliver specific cellular components to the vacuole. In this study, we show that the micropexohagy and vacuole inheritance required distinct domain structures of Pichia pastoris Vac8 (PpVac8). Whereas vacuole inheritance required the Armadillo repeat (ARM) region that resides in the middle part of the protein, micropexophagy did not. Deletion of both the ARM and C-terminal domains inhibited a characteristic of vacuolar dynamics during micropexophagy, i.e., formation of the vacuolar sequestering membrane (VSM). Subsequent analyses indicated that PpVAC8 disruption abolished recruitment of PpAtg11, another protein required for formation of the VSM, to the vacuolar membrane. These results present a novel molecular function of PpVac8 in micropexophagy.  相似文献   

11.
Ion transport in Nitellopsis obtusa   总被引:22,自引:0,他引:22  
The distribution and rates of exchange of the ions sodium, potassium, and chloride in single internodal cells of the ecorticate characean, Nitellopsis obtusa, have been studied. In tracer experiments three kinetic compartments were found, the outermost "free space" of the cell, a compartment we have called "protoplasmic non-free space", and the cell sap. The concentrations in the vacuole were 54 mM Na(+), 113 mM K(+), and 206 mM Cl(-). The steady state fluxes across the vacuolar membrane were 0.4 pmole Na(+)/cm.(2) sec., 0.25 pmole K(+)/cm.(2) sec., and 0.5 pmole Cl(-)/cm.(2) sec. The protoplasmic Na/K ratio is equal to that in the vacuole but protoplasmic chloride is relatively much lower. Osmotic considerations suggest a layer 4 to 6 micro thick with sodium and potassium concentrations close to those in the vacuole. The fluxes between protoplasm and external solution were of the order of 8 pmoles Na(+)/cm.(2) sec. and 4 pmoles K(+)/cm.(2) sec. We suggest that the protoplasm is separated from the cell wall by an outer protoplasmic membrane at which an outward sodium transport maintains the high K/Na ratio of the cell interior, and from the vacuole by the tonoplast at which an inward chloride transport maintains the high vacuolar chloride. The tonoplast appears to be the site of the principal diffusion resistance of the cell, but the outer protoplasmic membrane probably of the main part of the potential.  相似文献   

12.
BP-80, later renamed VSR(PS-1), is a putative receptor involved in sorting proteins such as proaleurain to the lytic vacuole, with its N-terminal domain recognizing the vacuolar sorting determinant. Although all VSR(PS-1) characteristics and in vitro binding properties described so far favored its receptor function, this function remained to be demonstrated. Here, we used green fluorescent protein (GFP) as a reporter in a yeast mutant strain defective for its own vacuolar receptor, Vps10p. By expressing VSR(PS-1) together with GFP fused to the vacuolar sorting determinant of petunia proaleurain, we were able to efficiently redirect the reporter to the yeast vacuole. VSR(PS-1) is ineffective on GFP either alone or when fused with another type of plant vacuolar sorting determinant from a chitinase. The plant VSR(PS-1) therefore interacts specifically with the proaleurain vacuolar sorting determinant in vivo, and this interaction leads to the transport of the reporter protein through the yeast secretory pathway to the vacuole. This finding demonstrates VSR(PS-1) receptor function but also emphasizes the differences in the spectrum of ligands between Vps10p and its plant equivalent.  相似文献   

13.
Yeast-hypha differentiation is believed to be necessary for the normal progression of Candida albicans infections. The emergence and extension of a germ tube from a parental yeast cell are accompanied by dynamic changes in vacuole size and morphology. Although vacuolar function is required during this process, it is unclear if it is vacuolar expansion or some other vacuolar function that is important. We previously described a C. albicans vps11Delta mutant which lacked a recognizable vacuole compartment and with defects in multiple vacuolar functions. These include sensitivities to stress, reduced proteolytic activities, and severe defects in filamentation. Herein we utilize a partially functional VPS11 allele (vps11hr) to help define which vacuolar functions are required for differentiation and which influence interaction with macrophages. Mutant strains harboring this allele are not osmotically or temperature sensitive and have normal levels of secreted aspartyl protease and carboxypeptidase Y activity but have a fragmented vacuole morphology. Moreover, this mutant is defective in filamentation, suggesting that the major role the vacuole plays in yeast-hypha differentiation may relate directly to its morphology. The results of this study support the hypothesis that vacuole expansion is required during germ tube emergence. Both vps11 mutants were severely attenuated in their ability to kill a macrophage cell line. The viability of the vps11delta mutant was significantly reduced during macrophage interaction compared to that in the control strains, while the vps11hr mutant was unaffected. This implies some vacuolar functions are required for Candida survival within the macrophage, while additional vacuolar functions are required to inflict injury on the macrophage.  相似文献   

14.
We have used a lipophilic styryl dye, N-(3-triethylammoniumpropyl)-4- (p-diethylaminophenyl-hexatrienyl) pyridinium dibromide (FM 4-64), as a vital stain to follow bulk membrane-internalization and transport to the vacuole in yeast. After treatment for 60 min at 30 degrees C, FM 4- 64 stained the vacuole membrane (ring staining pattern). FM 4-64 did not appear to reach the vacuole by passive diffusion because at 0 degree C it exclusively stained the plasma membrane (PM). The PM staining decreased after warming cells to 25 degrees C and small punctate structures became apparent in the cytoplasm within 5-10 min. After an additional 20-40 min, the PM and cytoplasmic punctate staining disappeared concomitant with staining of the vacuolar membrane. Under steady state conditions, FM 4-64 staining was specific for vacuolar membranes; other membrane structures were not stained. The dye served as a sensitive reporter of vacuolar dynamics, detecting such events as segregation structure formation during mitosis, vacuole fission/fusion events, and vacuolar morphology in different classes of vacuolar protein sorting (vps) mutants. A particularly striking pattern was observed in class E mutants (e.g., vps27) where 500-700 nm organelles (presumptive prevacuolar compartments) were intensely stained with FM 4- 64 while the vacuole membrane was weakly fluorescent. Internalization of FM 4-64 at 15 degrees C delayed vacuolar labeling and trapped FM 4- 64 in cytoplasmic intermediates between the PM and the vacuole. The intermediate structures in the cytoplasm are likely to be endosomes as their staining was temperature, time, and energy dependent. Interestingly, unlike Lucifer yellow uptake, vacuolar labeling by FM 4- 64 was not blocked in sec18, sec14, end3, and end4 mutants, but was blocked in sec1 mutant cells. Finally, using permeabilized yeast spheroplasts to reconstitute FM 4-64 transport, we found that delivery of FM 4-64 from the endosome-like intermediate compartment (labeled at 15 degrees C) to the vacuole was ATP and cytosol dependent. Thus, we show that FM 4-64 is a new vital stain for the vacuolar membrane, a marker for endocytic intermediates, and a fluor for detecting endosome to vacuole membrane transport in vitro.  相似文献   

15.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

16.
Salt tolerance in Saccharomyces cerevisiae is a complex trait, involving regulation of membrane polarization, Na(+) efflux and sequestration of Na(+) in the vacuole. Since transmembrane transport energized by H(+)-adenosine triphosphatases (ATPases) is common to all of these tolerance mechanisms, the objective of this study was to characterize the responses of the plasma membrane H(+)-ATPase, vacuolar H(+)-ATPase and mitochondrial F(1)F(0)-ATPase to NaCl stress. We hypothesized that since the vacuolar ATPase is responsible for generating the proton motive force required for import of cations (such as Na(+)) into the vacuole, strains lacking this activity should be hypersensitive to NaCl. We found that strains lacking vacuolar ATPase activity were in fact hypersensitive to NaCl, while strains lacking ATP synthase were not. This effect was specific to the ionic component of NaCl stress, since the mutant strains were indistinguishable from wild-type and complemented strains in the presence of sorbitol.  相似文献   

17.
Biochemical characterization of the yeast vacuolar H(+)-ATPase   总被引:15,自引:0,他引:15  
The yeast vacuolar proton-translocating ATPase was isolated by two different methods. A previously reported purification of the enzyme (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095) was repeated. This procedure consisted of isolation of vacuoles, solubilization with the zwitterionic detergent ZW3-14, and glycerol gradient centrifugation of the solubilized vacuoles. The fraction with the highest specific activity (11 mumol of ATP hydrolyzed mg-1 min-1) included eight polypeptides of apparent molecular masses of 100, 69, 60, 42, 36, 32, 27, and 17 kDa, suggesting that the enzyme may be more complex than the three-subunit composition proposed from the original purification. The 69-kDa polypeptide was recognized by antisera against the catalytic subunits of two other vacuolar ATPases and labeled with the ATP analog 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, indicating that it contains all or part of the catalytic site. A monoclonal antibody was prepared against this subunit. Under nondenaturing conditions, the antibody immunoprecipitated eight polypeptides, of the same molecular masses as those seen in the glycerol gradient fraction, from solubilized vacuolar vesicles. All eight of these polypeptides are therefore good candidates for being genuine subunits of the enzyme. The structure and function of the yeast vacuolar H+-ATPase were further characterized by examining the inhibition of ATPase activity by KNO3. In the presence of 5 mM MgATP, 100 mM KNO3 inhibited 71% of the ATPase activity of vacuolar vesicles, and the 69- and 60-kDa subunits (and possibly the 42-kDa subunit) were removed from the vacuolar membrane to a similar extent. At concentrations of less than 200 mM KNO3, the stripping of the ATPase subunits and the inhibition of ATPase activity were dependent on the presence of MgATP, suggesting that this is a conformation-specific disassembly of the enzyme. The yeast vacuolar H+-ATPase is a multisubunit enzyme, consisting of a combination of peripheral and integral membrane subunits. Its structure and subunit composition are very similar to other vacuolar ATPase, and it shares some characteristics with the F1F0-ATPases.  相似文献   

18.
The brush border membrane of the insect midgut is an initial site for interaction of insecticidal proteins. We have investigated the possibility that it may contain a target site for two insecticidal fungal toxins, destruxin and efrapeptin, both of which are ATPase inhibitors. We have studied the effects of the toxins on the hydrolytic activity of a vacuolar type ATPase (V-ATPase) that we have identified from Galleria mellonella midgut columnar cell brush border membrane vesicles (BBMV) by its cation and pH dependence, sensitivity to proton pump inhibitors and K(m) (0.49 mM ATP). Efrapeptin strongly inhibited the BBMV V-ATPase but destruxin had little effect. We compared the effects of the inhibitors on known plant membrane hydrolytic enzymes, and although the vacuolar pyrophosphatase and plasma membrane ATPase were not inhibited by the toxins, the V-ATPase from mung bean, but not barley, was inhibited (50%) by 10 microM concentrations of both compounds. Different forms of the toxins were tested on the ATPases and destruxin B and efrapeptin F were the most effective. Kinetic analysis showed that the purified forms of both compounds inhibited the V-ATPases uncompetitively and modelling of data for inhibition of the BBMV V-ATPase by efrapeptin at concentrations of 0.06--12 microM yielded a K(i) of 0.125 microM.  相似文献   

19.
The addition of an elicitor (glucan) to Phaseolus vulgaris cell suspension cultures increased the formation of the phytoalexin phaseollin. Intracellular pH and phosphate concentrations were studied with 31P nuclear magnetic resonance spectroscopy on elicitor-treated cells which were aerated during the nuclear magnetic resonance measurement. The pH of the vacuole and to a lesser extent the pH of the cytoplasm were affected at 10 minutes after elicitor addition; a decrease in pH from 5.3 to 4.8 was noted in the vacuole and from 7.46 to 7.28 in the cytoplasm. The ratio between the amount of Pi in the vacuole to that in the cytoplasm also changed within 10 minutes after elicitor addition. The signal for ATP (β-ATP) was low after elicitor addition and was high again 23 hours after elicitation. Forty-eight hours after elicitor addition, vacuolar and cytoplasmic pH had almost returned to their initial values. The rapid change in vacuolar and cytoplasmic pH may cause the change of metabolism that occurs in elicitor-treated P. vulgaris cells.  相似文献   

20.
Plant growth results from the division, enlargement and specialization of cells. The two processes of the enlargement and the differentiation of cells are not spatially separated in plant tissue. We focus our attention here on the enlargement and elongation of cells. In most cases, growing plant cells contain a large central vacuole. The acid growth theory is based on the space-filling function of the large vacuole. The active transport systems in the vacuolar membrane are essential for maintenance of high osmotic pressure and for the expansion of the vacuole. The secondary active transport systems of the vacuole for sugars and ions are driven by the proton-motive force which is generated by the vacuolar H+-ATPase and H+-translocating inorganic pyrophosphatase. In this review, the relationship between cell elongation and these enzymes of the vacuolar membrane is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号