首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylococcus capsulatus (Bath) possesses methane monooxygenase (MMO) which catalyses the epoxidation of propylene to propylene oxide. MMO activity could be maintained in whole cells by storage in unagitated vessels for several days. However if these cells were agitated and aerated in the absence of a carbon and energy source then 80% of the propylene-oxidizing activity Was lost within 24 h. It was shown that this loss of activity was due to the inability of the cells to provide energy to drive the oxidation process rather than the loss of MMO activity per se. If propylene oxide was added to these aerated cells then the rate of inactivation was increased and 50% of the activity was lost over a 10 min period. The addition of an exogenous energy source caused a doubling in the rate of inactivation. These marked increases in the rates of inactivation in the presence of propylene oxide were found to be caused by the loss of the methane monooxygenase activity per se rather than a further loss of the energy-producing systems. Cells actively producing propylene oxide from propylene, using methanol as an energy source, also lost their propylene oxide-producing capacity rapidly due to loss of the methane monooxygenase activity. The rate of inactivation under these circumstances was related to the rate of propylene oxide production from propylene rather than the level of this product in the culture supernatant.  相似文献   

2.
Methylococcus capsulatus (Bath) possesses methane monooxygenases (soluble - (sMMO) and particulate - (pMMO)) which are able to catalyse the epoxidation of propylene to propylene oxide. In a previous paper we have shown that the production of the epoxide caused a rapid inactivation of the bioconversion process (Stanley et al, 1992). This paper shows that cultures containing pMMO, inactivated by propylene oxide production, could be completely reactivated in the presence of growth substrates within 5 h after the removal of propylene oxide so long as the propylene oxide production rate was below 150 nmol min-1 [mg dry weight cells]-1. Reactivation under these conditions was detectable within 30 min of propylene oxide removal. On the other hand, cells inactivated by propylene oxide production rates in excess of 150 nmol min-1 [mg dry weight]-1 did not begin to recover activity within the 30 min period. Furthermore a lag period was observed before reactivation began which was dependent upon the initial production rate. Cultures possessing sMMO took twice as long to recover their activity compared with cells containing pMMO.

Reactivation of propylene oxide production could occur without growth, but the process required the presence of a carbon and energy source (methane or methanol), sulphur, nitrogen and oxygen, although copper (which is normally involved in pMMO activity) was not required. It was shown that de novo protein synthesis was required for reactivation of activity.

Production rates of 12 g 1-1 d-1 could be maintained for longer than three weeks in a single phase production process and rates up to 30 g 1-1 d-1 were achieved in a two stage process. Using Methylocystis parvus (OBBP) rates of up to 90 g 1-1 d-1 were attained over a one week period.  相似文献   

3.
Membranes obtained from whole-cell lysates of Methylococcus capsulatus (Bath) were separated by Triton X-100 extraction. The resulting insoluble fraction was enriched in outer membranes as assessed by electron microscopy and by the content of β-hydroxy palmitic acid and particulate methane monooxygenase. Major proteins with molecular masses of approximately 27, 40, 46, 59, and 66 kDa were detected by SDS-PAGE of the Triton-X-100-insoluble membranes. MopA, MopB, MopC, MopD, and MopE (Methylococcus outer membrane protein) are proposed to designate these proteins. Several of the Mop proteins exhibited heat-modifiable properties in SDS-PAGE and were influenced by the presence of 2-mercaptoethanol in the sample buffer. The 46- and 59-kDa bands migrated as a single high-molecular-mass 95-kDa oligomer under mild denaturing conditions. When reconstituted into black lipid membranes, this oligomer was shown to serve as a channel with an estimated single-channel conductance of 1.4 nS in 1 M KCl. Received: 20 December 1996 / Accepted: 11 April 1997  相似文献   

4.
The first gene cluster encoding for a membrane bound [NiFe] hydrogenase from a methanotroph, Methylococcus capsulatus (Bath), was cloned and sequenced. The cluster consisted of the structural genes hupS and hupL and accessory genes hupE, hupC and hupD. A DeltahupSL deletion mutant of Mc. capsulatus was constructed by marker exchange mutagenesis. Membrane associated hydrogenase activity disappeared. The membrane associated hydrogenase appeared to have a hydrogen uptake function in vivo.  相似文献   

5.
Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.  相似文献   

6.
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented.  相似文献   

7.
Earlier work from our laboratory has indicated that a hemerythrin-like protein was over-produced together with the particulate methane monooxygenase (pMMO) when Methylococcus capsulatus (Bath) was grown under high copper concentrations. A homologue of hemerythrin had not previously been found in any prokaryote. To confirm its identity as a hemerythrin, we have isolated and purified this protein by ion-exchange, gel-filtration and hydrophobic interaction chromatography, and characterized it by mass spectrometry, UV-visible, CD, EPR and resonance Raman spectroscopy. On the basis of biophysical and multiple sequence alignment analysis, the protein isolated from M. capsulatus (Bath) is in accord with hemerythrins previously reported from higher organisms. Determination of the Fe content in conjunction with molecular-weight estimation and mass analysis indicates that the native hemerythrin in M. capsulatus (Bath) is a monomer with molecular mass 14.8 kDa, in contrast to hemerythrins from other eukaryotic organisms, where they typically exist as a tetramer or higher oligomers.  相似文献   

8.
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting β-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP () predicted 43 β-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8–3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins (). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.  相似文献   

9.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

10.
The effect of copper supplementation on growth, methane monooxygenase activity and lipid composition of Methylococcus capsulatus (Bath) was studied. Copper increased biomass yield, methane monooxygenase activity and phospholipid content from 7.7 to 10.2% of dry weight. Cells from copper-deficient and copper supplemented cultures contained the same major fatty acids but in the presence of copper only the contents of C16:0 and the three C16:1 isomers were increased while the contents of C14:0 and cyclic C17:0 remained unchanged. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol and cardiolipin were analysed amongst the polar lipids. PE was the main component (about 60 mol-%) but the most notable copper-induced increment occurred in the proportion of PC, from about 10 to 16 mol-%. Concomitantly with this increment the fatty acids of PC were changed so that the mol-% of C16: 1 isomers were increased at the expense of other acids. Similar trends were seen also in the fatty acid compositions of other polar lipid fractions. It is therefore concluded that phosphatidylcholine would be one of the key factors when the role of membranous lipids in methane monooxygenase activity is to be considered.  相似文献   

11.
12.
Osteoclasts (OCL) resorb bone. They are essential for the development of normal bones and the repair of impaired bones. The function of OCL is presumed to be supported by cytokines and other biological mediators, including tumor necrosis factor (TNF)-α and nitric oxide (NO). Bacterial lipopolysaccharide (LPS) is a potent inducer of TNF-α and inducible nitric oxide synthase (iNOS), which is the specific enzyme for synthesizing NO from L-arginine. To obtain direct evidence on LPS-induced TNF-α production and iNOS expression by OCL, OCL-enriched cultures were prepared by 7-day cocultures of bone marrow cells of adult BALB/c mice and osteoblastic cells (OBs) derived from calvaria of newborn BALB/c mice, and the generation of TNF-α and iNOS in OCL stimulated with LPS was examined immunocytochemically. When the cultured cells were stimulated with 100 ng/ml of LPS, OCL clearly showed TNF-α and iNOS expression. Without LPS-stimulation, no expression was observed. TNF activity in the culture supernatants of the OCL-enriched cultures in the presence of LPS was also detected by cytotoxic assay that used TNF-sensitive L929 cells. The dentin resorption activity of OCL was estimated by area and number of pits formed on dentin slices, which were covered by the OCL fraction and cultured in the presence or absence of LPS, sodium nitroprusside (SNP; a NO generating compound), NG-monomethyl L-arginine acetate (L-NMMA; a competitive inhibitor of NO synthase (NOS)), or LPS plus L-NMMA. Pit formation was obviously inhibited in the presence of SNP and slightly inhibited in the presence of L-NMMA, but it was not affected in the presence of LPS or LPS plus L-NMMA. These findings indicate that OCL produces TNF and expresses iNOS in response to LPS, but the LPS-activation of OCL scarcely affects pit formation by them.  相似文献   

13.
以白皮改良蒜为试验材料,用不同浓度的一氧化氮气体(0.1、0.5、1.0 μmol·L-1)在无氧环境中对大蒜进行熏蒸。并使用TPS 1便携式光合仪结合Farquhar和Sharkey的理论测定或计算NO处理蒜苗的相关光合指标,同时测定核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)含量。发现与1.0 μmol·L-1 NO气体处理相比,0.5 μmol·L-1 NO处理的蒜苗叶片净光合速率(Pn)、气孔导度(Gs)提高、而胞间隙CO2浓度(Ci)、气孔限制值(Ls)降低,说明0.5 μmol·L-1 NO处理下蒜苗光合速率高于1.0 μmol·L-1 NO的处理的主要是非气孔因素。而且0.5 μmol·L-1 NO处理提高了蒜苗叶片表观量子效率(AQY)、表观羧化效率(CE)和光合能力(Ao)及Rubisco含量,说明外源NO处理提高了蒜苗叶片光合作用过程中光反应能力和碳同化过程中羧化酶羧化效率。与对照相比,1.0 μmol·L-1 NO处理降低了蒜苗叶片净光合速率,同时气孔导度、胞间隙CO2浓度、表观量子效率、Rubisco含量、羧化效率和光合能力均降低,而气孔限制值升高,说明1.0 μmol·L-1 NO对蒜苗光合作用的抑制既有气孔因素,也有非气孔因素。而0.1 μmol·L-1 NO处理各项指标与对照无显著性的差异。  相似文献   

14.
Oxidation of Co by Mn oxide has been investigated using abiotically synthesized Mn oxide. However, oxidation of Co by biogenic Mn oxide is not well known. In this study, we isolated a Mn-oxidizing bacterium (Pseudomonas sp.), designated as strain NGY-1, from stream water. Sorption experiments on Co were carried out using biogenic Mn oxide produced by strain NGY-1. Similar sorption experiments were also conducted using a synthetic analogue of δ-MnO2. Sorption of Co on δ-MnO2 was faster and stronger than that on biogenic Mn oxide, which was possibly due to their structural difference and/or the presence of bacterial cells in biogenic Mn oxide. X-ray absorption near-edge structure spectra clearly demonstrated that Co was oxidized from the divalent to the trivalent state on biogenic Mn and δ-MnO2. The oxidation property of both the biogenic Mn oxide and δ-MnO2 was stronger under circumneutral conditions than under acidic conditions. Linear combination fitting using divalent and trivalent Co reference materials suggested that ~90% of Co was oxidized at pH ~ 6, whereas ~80% was oxidized at pH ~ 3. Oxidation properties of the biogenic Mn oxide and δ-MnO2 were similar, but Co(II) oxidation by biogenic Mn oxide was slower than that by δ-MnO2. The difference of Co oxidation may be caused by the coexisting bacterial cells or structural differences in the Mn oxides.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

15.
A bacterium designated Nocardia A60 was isolated for its capacity to utilize propylene oxide (1,2-epoxypropame) aerobically as a carbon and energy source for growth. Extracts of cells grown on the epoxide catalyzed the conversion of propylene oxide to 1,2-propanediol This epoxidase activity was absent in cells grown on 1,2-propanediol or succinate. During growth of the organism on propylene oxide and 1,2-propanediol it contained high levels of diol dehydratase (EC 4.2.1.28). Enhanced levels of propionyl-CoA carboxylase during growth on propylene oxide and 1,2-propanediol suggest that these compounds are metabolized via propionate and succinate.  相似文献   

16.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT.  相似文献   

17.
The role of poly(ethylene oxide) polymer is investigated as an effective buffer with Al electrodes to markedly improve the electrode interface and enhance the open‐circuit voltage (VOC) and the power conversion efficiency (PCE, η) of poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM)‐based bulk‐heterojunction (BHJ) solar cells. A unique process is developed by thermally co‐evaporating the poly(ethylene glycol) dimethyl ether (PEGDE, Mn ca. 2000) polymer with Al metal simultaneously at different ratios in vacuum (10?6 Torr) to prepare the electrode buffers. The instant formation of a carbide‐like junction at the ethylene oxide/Al interface during the thermal evaporation is of essential importance to the extraction of electrons through the Al electrode. The performance of P3HT:PCBM‐based solar cells can be optimized by modulating the co‐evaporation ratios of the PEGDE polymer with Al metal due to the changes in the work functions of the electrodes. The VOC and η for devices fabricated with Al electrode are 0.44 V and 1.64%, respectively, and significantly improve to 0.58 V and 4.00% when applying the PEGDE:Al(2:1)/Al electrode. This research leads to a novel electrode design – free of salts, additives, complicated syntheses, and having tunable work function – for fabricating high‐performance photovoltaic cells.  相似文献   

18.
Identification of surface proteins is essential to understand bacterial communication with its environment. Analysis of the surface-associated proteins of Methylococcus capsulatus (Bath) revealed a highly dynamic structure responding closely to the availability of copper in the medium in the range from approximately 0 to 10 microM. Several c-type cytochromes, including three novel multihaem proteins, are present at the cellular surface, a feature that is otherwise a peculiarity of dissimilatory metal-reducing bacteria. At low copper concentrations, the cytochrome c(553o) and the cytochrome c(553o) family protein, encoded by the MCA0421 and MCA0423 genes, respectively, are major constituents of the surfaceome and show a fine-tuned copper-dependent regulation of expression. Two novel members of the cytochrome c(553o) family were identified: MCA0338 was abundant between 5 and 10 microM copper, while MCA2259 was detected only in the surface fraction obtained from approximately 0 microM copper cultures. The presence at the bacterial surface of several c-type cytochromes, generally involved in energy transduction, indicates strongly that redox processes take place at the bacterial surface. Due to the unique role of copper in the biology of M. capsulatus (Bath), it appears that c-type cytochromes have essential functions in copper homeostasis allowing the cells to adapt to varying copper exposure.  相似文献   

19.
20.
A major improvement in the purification of the oxygenase protein (component A) of the methane monooxygenase has been effected. By employing high-pressure gel permeation chromatography several purification steps may be omitted from the previously published scheme. Furthermore the yield of the protein is enhanced and more importantly the recovered protein displays an increased specific activity, unlike that purified by other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号