首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The double-isotope concept [Arias, Doyle & Schimke (1969) J. Biol. Chem. 224, 3303--3315] for the measurement of protein turnover was used to estimate the turnover of proteins in subcellular and submitochondrial fractions prepared from rat liver. 2. Double-isotope experiments with [3H]leucine as first precursor and [14C]leucine as second precursor were used to measure the turnover rates of proteins in subcellular and submitochondrial fractions. Solvent extraction procedures designed to remove lipids and nucleic acids from trichloroacetic acid precipitates only changed the isotope ratio of the microsomal fraction. It was not possible to measure turnover of proteins in mitochondrial and submitochondrial fractions with these precursors. 3. Double-isotope experiments were designed to minimize first-precursor reutilization by employing NaH14CO3. [3H]Arginine was used as second precursor. The turnover rates of protein in subcellular and submitochondrial fractions was measured. Solvent extraction procedures designed to remove lipids and nucleic acids showed changes in the isotope ratio for all subcellular fractions, especially in microsomal and detergent-soluble mitochondrial fractions. Isotope ratios of precipitates after solvent extraction indicate that, whereas considerable heterogeneity exists for the average rates of protein turnover in subcellular fractions, little heterogeneity is observed in the average rates of protein turnover in submitochondrial fractions.  相似文献   

2.
Protein degradation in rat liver during post-natal development.   总被引:4,自引:2,他引:2       下载免费PDF全文
Protein degradation rates for liver subcellular and submitochondrial fractions from neonatal (8-day), weanling (25-day) and adult rats were estimated by the double-isotope method with NaH14CO3 and [3H] arginine as the radiolabelled precursors [Dice, Walker, Byrne & Cardiel (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2093-2097]. Decreased protein degradation rates were found during post-natal development for homogenate, nuclear, mitochondrial, lysosomal and microsomal proteins. A decrease in degradation rates for the immunoisolated subunits of monoamine oxidase and pyruvate dehydrogenase was also observed in neonatal and weanling rats respectively. The results suggest coordinate degradation of the subunits of the multi-subunit enzyme pyruvate dehydrogenase. Pyruvate dehydrogenase has a faster rate of degradation in adult rat liver than does cytochrome oxidase. Data analysis suggests heterogeneity of protein degradation rates in the mitochondrial outer membrane and intermembrane space fractions at each developmental stage but not in the mitochondrial inner membrane or matrix fractions. Results obtained for protein degradation rates in adult rat liver by the method of Burgess, Walker & Mayer [(1978) Biochem. J. 176, 919-926] in general confirmed the results obtained for the adult rat liver by the above method. No evidence of a subunit-size relationship for protein degradation was found for proteins in any subcellular or submitochondrial fraction.  相似文献   

3.
Mammary gland explants in organ culture were subjected to hormonal manipulation, and rates of protein degradation during 1 and 2 day periods were measured by a double-isotope method. Isotope ratios for protein subunits in subcellular fractions were measured after resolution by two-dimensional polyacrylamide gel electrophoresis. Frequency distribution analysis shows that the isotope ratios for each fraction are coupled predominantly in exponential distributions corresponding to populations of protein subunits with different mean degradation rates. The result also suggest that heterogeneity of protein degradation rates within each population is limited. There is no consistent correlation of degradation rate with protein isoelectric point or subunit molecular weight either overall or within any population of degradation rates. Therefore, the similarity of protein degradation rates within each population is clearly not related to these molecular properties of the proteins.  相似文献   

4.
A polyclonal antibody to the catalytic subunit of rat kidney Na,K-ATPase has been raised in rabbits and used to analyze the turnover of the subunit in the rat hepatoma cell line HTC. It had been shown previously (Baumann, H., and Doyle, D. (1978) J. Biol. Chem. 253, 4408-4418) that the membrane proteins of these cells displayed multicomponent turnover kinetics, the minority of the surface proteins turning over with a half-time of about 20 h and the remainder with a half-time of about 100 h. That the antibody precipitated both the alpha (catalytic) and beta (glycosylated) subunits of the Na,K-ATPase from Triton extracts of HTC cells could be demonstrated following metabolic labeling of the cells with either [3H]leucine or a mixture of [3H] mannose and [3H]fucose, but following labeling with [35S]methionine radioactivity was found only in the alpha subunit of the precipitates. Incorporation of [35S]methionine into the alpha subunit could be detected 2 min after addition of the isotope to the cell suspension. Then and at all times thereafter the label was recoverable only from the particulate fraction of a 150,000 X g 60-min centrifugation; no labeled alpha subunit was ever detected in the supernatant fraction. By quantitative densitometry of radioautographs of sodium dodecyl sulfate-polyacrylamide gels of labeled antibody precipitates, it could be shown in pulse-chase experiments that the specific activity of the alpha subunit remained unchanged for 3-4 h (transit time) after the pulse was initiated and that the activity subsequently decayed exponentially with a half-time of 18 h. In a population growing with a generation time (tG) of 33 h, this decay corresponds to a turnover rate constant of 0.49/tG. The catalytic subunit is among those membrane proteins with a rapid turnover rate.  相似文献   

5.
1. The turnover of cerebral histones and DNA after injection of [4,5-(3)H]leucine or [methyl-3-(3)H]thymidine, respectively, was studied in the developing chick. 2. Chromatin was prepared from chick nuclei that had been purified by centrifugation through 1.9m-sucrose. 3. Nuclear proteins were fractionated into three major histone classes, F1 (lysine-rich), F2(b) (slightly lysine-rich) and [F3+F2(a)] (arginine-rich), and a non-histone protein residue. 4. The proportions of the histone classes remained constant throughout the period of development studied. 5. All histone fractions decayed at a similar rate, initially with a half-life of around 5 days, later with a half-life of 19 days. 6. Non-histone proteins from chromatin decayed in a heterogeneous manner with a wide range of half-lives. 7. Short-term labelling studies showed that all histone fractions were synthesized at the same rate. 8. Some non-histone proteins were very rapidly synthesized relative to histones. 9. DNA had a longer half-life than any histone fraction studied. A biphasic exponential decay curve with half-lives of 23 and 50 days was found. 10. It was concluded that the turnover of histones can occur independently of that of DNA and that different histone classes have similar rates of synthesis and decay.  相似文献   

6.
—The incorporation of [4,5-3H]lysine and [1-14C]leucine into the proteins of subcellular fractions of mouse brain was examined following a single electroconvulsive shock (ECS) or following cycloheximide injections. When the [3H]lysine was injected intraperitoneally immediately after the ECS the incorporation into total brain proteins was decreased by more than 50% as compared to sham controls. The proportion of lysine incorporated into the microsomal fraction was increased, but no changes were observed in the other subcellular fractions including the synaptosomal fraction. With extended pulses administered at various times after the ECS there was no change in total incorporation nor were selective effects seen in any subcellular fractions. With intracranial injections of both [3H]lysine and [14C]leucine the decreased incorporation caused by ECS was not observed, neither were there selective changes in any subcellular fraction. This lack of inhibition occurred because the intracranial injection itself severely inhibited [3H]lysine incorporation. Cycloheximide (30 mg/kg) which depressed [3H]lysine incorporation into brain proteins by 84% caused a selective depression of the incorporation into the cell-sap fraction and selective elevations into the microsomal and synaptosomal fractions. Similar changes were seen with a higher (amnestic) dose of cycloheximide (150 mg/kg) which inhibited incorporation by 94%. These data are interpreted in terms of the diverse mechanisms by which ECS and cycloheximide inhibit protein synthesis.  相似文献   

7.
The degradation of proteins in Escherichia coli was investigated in cells grown under steady-state conditions in a glucose-limited chemostat. During the first 24 h, approximately 25% of pulse-labeled proteins were degraded and after 72 h up to 58% of the proteins were broken down. To examine the stability of subcellular components steady-state cultures were labeled with an initial pulse of [14C]leucine, 24 h were allowed for turnover of these proteins, and the cells were then labeled with a short pulse of [3H]leucine. By this double-label protocol, the labile proteins were preferentially labeled with [H]leucine and had high 3H/14C ratios, while the more stable proteins had lower 3//14C ratios. The 3/-labeled proteins were degraded approximately five times as rapidly as the 14C-labeled proteins in exponentially growing cells. The relative stability of subcellular fractions was determined by comparing their 3H/14C ratios to the ratio of the cells at harvest. The soluble fraction contained the most labile proteins, while the ribosomal and membrane fractions were at least as stable as the average cell protein.  相似文献   

8.
Y Z Zhang  G Ewart  R A Capaldi 《Biochemistry》1991,30(15):3674-3681
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane[35S]sulfonate and sodium methyl 4-[3H]formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibody (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage product from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.  相似文献   

9.
Small (30 S) ribosomal subunits from Escherichia coli strain TPR 201 were photoaffinity-labeled with [3H]puromycin in the presence of chloramphenicol under conditions in which more than 1 mol of antibiotic was incorporated per mol of ribosomes. The subunits were than washed with 3 M NH4Cl to yield core particles and a split protein fraction; the split proteins were further fractionated with ammonium sulfate. Subunits were then reconstituted using one fraction (core, split proteins, or ammonium sulfate supernatant) from photoaffinity-modified subunits and other components from unmodified (control) subunits. The distribution of [3H]puromycin in ribosomal proteins was monitored by one-dimensional polyacrylamide gel electrophoresis, and the sites of puromycin binding were visualized by immunoelectron microscopy. Two areas of puromycin binding were identified. A high affinity puromycin site, found on the upper third of the subunit and distant from the platform, is identical to the primary site previously identified (Olson, H. M., Grant, P. G., Glitz, D. G., and Cooperman, B. S. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 890-894). Binding at this site is maximal in subunits reconstituted with high levels of puromycin-modified protein S14, and is decreased when unmodified S14 is incorporated. Because the percentage of antibody binding at the primary site always exceeds the percentage of puromycin label in protein S14, the primary site must include components other than S14. A secondary puromycin site of lower affinity is found on the subunit platform. This site is enriched in subunits reconstituted from puromycin-modified core particles and may include protein S7. Our results demonstrate the feasibility of localizing specifically modified components in reconstituted ribosomal subunits.  相似文献   

10.
We transfected COS cells with expression vectors for the wild-type G protein alpha i1 subunit (pWT) and for mutated alpha i1 subunits, including the nonmyristylated glycine 2 to alanine mutant (pGA) and mutants in which the carboxyl termini of pWT and pGA were changed from CGLF to CVLS (pCVLS and pGA-CVLS, respectively). Immunoblot analysis of transfected COS cells with an antibody to residues 159-168 of the alpha i1 protein indicated that all four proteins were expressed. Unlike the WT and GA proteins, both CVLS mutant proteins failed to react with an antibody specific for the carboxyl terminus and failed to undergo pertussis toxin-catalyzed ADP-ribosylation. Analysis of COS cell lysates after [3H]mevalonic acid labeling indicated that specific incorporation of radioactivity occurred only in the alpha i1 subunits with the CVLS mutation. Immuno-precipitation of COS cell fractions after labeling with [35S]methionine indicated that both WT and CVLS mutant proteins were localized predominantly in the particulate fraction, whereas GA and GA-CVLS mutant proteins were found primarily in the soluble fraction. These results directly demonstrate that the carboxyl-terminal sequence, CGLF, is incapable of leading to isoprenylation but that alteration of two residues (glycine to valine, phenylalanine to serine) is sufficient to promote isoprenylation.  相似文献   

11.
The phosphorylation and dephosphorylation of specific proteins was demonstrated directly in the intact vertebrate nervous system in vivo. By exploiting the neurons' ability to segregate a select group of cytoskeletal proteins from most other phosphorylated constituents of the cell by axoplasmic transport, we were able to examine the dynamics of phosphate turnover on neurofilament proteins in mouse retinal ganglion cell neurons simultaneously labeled with [32P]orthophosphate and [3H]proline in vivo. Three [3H]proline-labeled neurofilament protein (NFP) subunits, designated H (160-200 kDa), M (135-145 kDa), and L (68-70 kDa), entered optic axons in a mole:mole ratio similar to that of isolated axonal neurofilaments, supporting the notion that newly synthesized NFPs are transported along axons as assembled neurofilaments. NFP subunits incorporated high levels of 32P before reaching axonal sites at the level of the optic nerve. As neurofilaments were transported along axons, however, many initially incorporated [32P]phosphate groups were removed. Loss of these phosphate groups occurred to a different extent on each subunit. A minimum of 50-60 and 35-40% of the labeled phosphate groups was removed in a 5-day period from the L and M subunits, respectively. By contrast, the H subunit exhibited relatively little or no phosphate turnover during the same period. Dephosphorylation of L in axons is accompanied by a decrease in its net state of phosphorylation; changes in the phosphorylation state of H and M, however, also reflect ongoing addition of phosphates to these polypeptides during axonal transport (Nixon, R.A., Lewis, S.E., and Marotta, C.A. (1986) J. Neurosci., in press). The possibility is raised that dynamic rearrangements of phosphate topography on NFPs represent a mechanism to coordinate interactions of neurofilaments with other proteins as these elements are transported and incorporated into the stationary cytoskeleton along retinal ganglion cell axons.  相似文献   

12.
The concentrations of the regulatory (R) and catalytic (C) subunits of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase(s) were measured in extracts of skeletal muscle, heart, liver, kidney, and brain. These concentrations were also estimated for the particulate fraction from brain, the only tissue in which a major part of the total activity was not readily extracted in a soluble form. Values for R were determined by measuring the amount of cyclic [3H]amp bound to protein in these tissue fractions under specified conditions; it was assumed that 1 mol of cyclic AMP binds to 1 mol of R. Values for C were determined from measurements of the specific protein kinase activity of the fractions utilizing the turnover number of pure C in the calculations. Turnover numbers for C were found to be identical for this subunit obtained in the pure form from rabbit skeletal muscle, rabbit liver, and beef heart. The methods used for measuring C were evaluated by kinetic studies and through the use of the specific heatstable protein inhibitor of cyclic AMP-dependent protein kinase(s). R and C were found to exist in a 1:1 molar ratio in all of the tissue fractions that were studied. the absolute concentrations of R and C ranged from 0.23 mumol/kg wet weight for liver to 0.78 mumol/kg wet weight for brain. For brain this value was based on the amount of each subunit in the particulate as well as the soluble fraction. For other tissues the values were based solely on the subunit content of the latter fraction. It was noted that the molar concentrations of R are close to those of cyclic AMP under basal conditions in the various tissues.  相似文献   

13.
The chloroplast enzyme ribulose-1,5-bisphosphate (Ru-1,5-P2) carboxylase (EC 4.1 1.39) is made up ot two nonidentical subunits, one synthesized in the chloroplast and the other outside. Both of these subunits of the assembled enzyme are synthesized in a stepwise manner during the synchronous cell cycle of the green alga Chlamydomonas reinhardtii. The activity of this enzyme increases in the light and this increase is due to de novo protein synthesis as shown by the measurement of the amount of protein and by the pulse incorporation of radioactive arginine in the 18S enzyme peak in linear sucrose density gradients. During the dark phase of the cell cycle, there is little change in the enzymatic activity as well as in the amount of this enzyme. Pulse-labeling studies using radioactive arginine indicated that there is a slow but detectable rate of synthesis of the carboxylase and of its subunits in the dark. Ru-1,5-P2 carboxylase, prelabeled with radioactive arginine throughout the entire light period, shows a similarly slow rate of degradation in the following dark period. This slow turnover of the enzyme in the dark accounts for the steady levels of carboxylase protein and of enzymatic activity during this period. A wide variety of inhibitors of protein synthesis by 70S and 80S ribosomes abolished the incorporation of [3H]arginine into total Ru-1,5-P2 carboxylase during short-term incubation. These results suggest a tight-coordinated control of the biosynthesis of the small and large subunits of the enzyme. This stringent control is further substantiated by the finding that both subunits are synthesized in sychrony with each other, that the ratio of radioactivity of the small to the large subunit remains constant throughout the entire light-dark cycle, and that the rates of synthesis and of degradation of both subunits are similar to that of the assembled enzyme.  相似文献   

14.
The molecular mechanisms that underlie ethanol dependence involve alterations in the functional properties and subunit expression of GABAA receptors. Chronic ethanol exposure decreases GABAA receptor alpha1 subunits and increases alpha4 subunit levels in cerebral cortical membranes. This study explored the effect of chronic ethanol exposure on internalization of GABAA/benzodiazepine receptors. Chronic ethanol exposure increased alpha1 subunit levels by 46 +/- 12% and [3H]flunitrazepam binding by 35 +/- 9% in the clathrin-coated vesicle (CCV) fraction. There was a corresponding 34 +/- 8% decrease in alpha1 peptide expression and 37 +/- 6% decrease in [3H]flunitrazepam binding in the synaptic fraction. Chronic ethanol consumption also increased the alpha1 subunit immunoprecipitate in the cytosolic fraction (77 +/- 22%), measured by western blot analysis. Moreover, co-immunoprecipitation of both clathrin and adaptin-alpha with alpha1 subunits was increased in the cytosolic fraction, suggesting that alpha1 subunit endocytosis is enhanced by chronic ethanol consumption. In contrast, alpha4 subunit peptide levels were not altered in the CCV fraction despite a 39 +/- 13% increase in peptide levels in the synaptic fraction of cortex. Moreover, acute ethanol exposure did not alter alpha1 subunit peptide expression or [3H]flunitrazepam binding in the synaptic or CCV fractions. These results suggest that chronic ethanol consumption selectively increases internalization of alpha1 subunit-containing GABAA receptors in cerebral cortex.  相似文献   

15.
Selenium (Se)-containing proteins in microsomal fractions of rat kidney and liver were investigated after isotopic labeling of rats with [75Se]selenite. More than 85% of the 75Se in the solubilized microsomal extracts precipitated with protein after trichloroacetic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), used to separate the labeled protein subunits in the solubilized microsomal extracts, revealed several 75Se-containing proteins in addition to glutathione peroxidase. 75Se-labeled subunits with molecular weights of 55, 30, 26, 22, 19, and 17 kDa were present in microsomal fractions of kidney and liver. The 75Se-labeled tryptic peptide of the 55 kDa subunit had the same Rf value on a 17% SDS-PAGE gel as the peptide from plasma selenoprotein P. A time-course study of the labeling of individual protein subunits in kidney and liver microsomes from Se-supplemented and Se-deficient rats showed that most of the 75Se was associated with the 55 kDa subunit 3 hr after injection. The amount of 75Se associated with this protein subunit decreased by 12 hr, with a concurrent increase in the labeling of lower molecular-weight subunits. The results support the hypothesis that there is a mechanism for transfer of Se from the 55 kDa subunit to other Se-containing proteins.  相似文献   

16.
Biosynthesis and degradation of gamma-glutamyltranspeptidase of rat kidney   总被引:2,自引:0,他引:2  
gamma-Glutamyltranspeptidase (gamma GTP) of rat kidney is an intrinsic glycoprotein bound to the plasma membrane and composed of two nonidentical subunits and an amino-terminal portion of the heavy subunit anchors the enzyme to the membrane. The mechanisms of biosynthesis, post-translational processing and degradation of the enzyme were studied using mono-specific antibody raised to gamma-glutamyltranspeptidase purified from rat kidney. The following results were obtained. Double isotope labeling in vivo showed that gamma-glutamyltranspeptidase is synthesized as a precursor form with a single polypeptide chain of 78,000 daltons, and then processed post-translationally by limited proteolysis, resulting in two subunits of 50,000 and 23,000 daltons. Incorporation of [3H]leucine or [35S]methionine into the precursor form increased until 60 min after their intravenous injection, and a pulse-chase experiment showed that the half life of the precursor form was 53 min. [3H]Fucose and [3H]glucosamine could also be incorporated into the precursor form, showing that glycosylation of the enzyme occurs at the stage of the precursor form. Rat kidney labeled with [3H]fucose was subjected to subcellular fractionation. The Golgi fraction contained the glycosylated precursor form and a small amount of subunits, and the plasma membrane fraction contained mostly subunits with a significant amount of precursor, suggesting that post-translational processing of the precursor occurs on the plasma membrane. The apparent half lives of the native enzyme and the heavy and light subunits were all estimated as 4.3 +/- 0.5 days by labeling with [3H]leucine or [3H]fucose. gamma-Glutamyltranspeptidase has a different turnover rate from aminopeptidase M, which is located in the microvillus membrane close to gamma-glutamyltranspeptidase.  相似文献   

17.
Abstract— Partially purified myelin from brains of 17-day-old rats was separated into 4 subfractions on a discontinuous sucrose gradient by virtue of heterogeneity in density and particle size. The protein composition of each subfraction was determined by densitometry following separation of proteins on polyacrylamide gels in buffers containing sodium dodecyl sulphate. The major proteins studied included two basic proteins, proteolipid protein, the major high molecular weight protein (W) and a group of high molecular weight proteins. The percentage of high molecular weight proteins decreased sequentially from fraction D to A, that of the W protein remained constant, while relative amounts of the two basic proteins increased. Proteolipid protein concentration also increased as a percentage of the total protein from fraction D to B, but the uppermost fraction. A, had a markedly lower amount than fraction B. At 1 h after intracranial injection of [3H]leucine, the specific radioactivity of the basic and proteolipid proteins decreased from fraction D to B, with proteolipid protein in fraction A again anomalous (specific radioactivity higher than expected). These results are consistent with (but do not prove) a precursor-product relationship for individual proteins from denser to lighter subfractions, with the exception of myelin subfraction A. Experiments involving time staggered injections of a [14C] and later a [3H] labelled amino acid gave data which demonstrated that the W and basic proteins were added simultaneously (or with delays of much less than 20 min) to all of the subfractions, while proteolipid protein was added sequentially, from lower to upper fractions on the gradient. This double isotope technique also confirmed our previous observations that proteolipid protein shows a lag in entry into myelin compared to basic protein.  相似文献   

18.
Kinase-negative mutants of S49 mouse lymphoma cells, which lack detectable catalytic (C) subunit of cyclic AMP-dependent protein kinase, nevertheless contain cytoplasmic mRNAs for the two major forms of C subunit, C alpha and C beta. Investigation of the metabolism of C subunits in wild-type and mutant cells was undertaken to identify the step(s) at which C subunit expression was defective in kinase-negative cells. [35S]methionine-labeled C subunits from cytosolic fractions of wild-type S49 cells or C subunit-overexpressing cell lines were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after purification by either affinity chromatography using a peptide inhibitor of C subunit as the ligand or immunoadsorption with an anti-C subunit antiserum. Immunoadsorption revealed electrophoretic forms of C alpha and C beta subunits that migrated faster than those detected in affinity-purified samples; this unexpected heterogeneity suggested that functional activation of C subunit may require posttranslational modification. Immunoadsorption of cytosolic fractions from wild-type cells labeled for various times with [35S]methionine revealed an additional posttranslational maturation step. The bulk of immunoadsorbable C subunit label in cells pulse-labeled for 5 min or less was in an insoluble fraction from which it could be solubilized with a detergent-containing buffer; solubilization of the newly synthesized material proceeded over an incubation period of about 10 min. The primary defect in kinase-negative cells appeared to be in this solubilization step, since about equal C subunit radioactivity was found in detergent extracts of wild-type and kinase-negative cells but very little was found in mutant cytosols. I speculate that an accessory factor required for proper folding of newly synthesized C subunit in defective in the kinase-negative cells.  相似文献   

19.
H Wohlrab 《Biochemistry》1979,18(10):2098-2102
The mitochondrial phosphate carrier is inhibited by the SH reagents p-(hydroxymercuri)benzoate and N-ethylmaleimide. Based on an analysis utilizing dodecyl sulfate-polyacrylamide gels, an SH-containing 32 000-dalton protein has been identified as a component of the phosphate carrier system. Two other N-[3H]ethylmaleimide-labeled proteins of the inner mitochondrial membrane have been eliminated from this role [Wholrab, H., & Greaney, J., Jr. (1978) Biochim. Biophys. Acta 503, 425] on the basis that band IV (45,000 daltons) is absent from heart sonic submitochondrial particles and band VII (6 500 daltons) does not react with p-(hydroxymercuri)benzoate. The mobility of the 32 000-dalton protein (0.43) is lower than that of the gamma subunit of the mitochondrial ATPase (0.46) and the carboxyatractyloside binding protein (0.48) on 12.5% dodecyl sulfate-polyacrylamide gels. In these flight muscle mitochondria, 0.87 nmol of N-[3H]ethylmaleimide per nmol of cytochrome a is bound to the 32,000-dalton protein.  相似文献   

20.
—[14C] orotic acid and [3H]l -leucine were injected intraperitoneally into two groups of rats, aged 12 and 24 months, respectively. The apparent turnover of RNA and protein from several subcellular fractions was assessed by following the loss of label from these fractions with time. The curves for apparent turnover of all protein fractions from mitochondria were single exponential curves. Total mitochondrial protein from younger animals had a half-life of 26.8 days. Two protein subfractions, protein insoluble in cold perchloric acid and chloroform-methanol (residual protein) and protein soluble in chloroform-methanol (C–M protein) had similar half-lives: 26.3 and 26.1 days, respectively. For the older animals the half-lives were 23.5 days for total protein, 17.4 for residual protein and 30.4 for C–M protein. The difference between the two protein subfractions from mitochondria of the older animals suggests an age-associated deviation from the synchrony of synthesis and degration of proteins in this organelle. Further deviation from the unit concept of mitochondrial turnover was seen in the apparent turnover of mitochondrial RNA. Mitochondrial RNA had half-lives of 10.0 and 11.6 days for older and younger animals, respectively, with no significant difference between the groups. No age-associated difference was observed in the apparent turnover of sRNA. This fraction exhibited a double exponential turnover pattern; the first component in both cases had a half-life of about 5–8 days and the second component 13–16 days. Ribosomal RNA and protein from both older and younger animals exhibited multiexponential kinetics but both components, RNA and protein, within each age group appeared to turn over synchronously. Average values for apparent turnover of total ribosomes (RNA and protein) were 18.2 days for the older animals and 7.4 days for the younger animals. The age-associated difference was highly significant P < (0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号