首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Actively foraging lizards use the lingual-vomeronasal system to identify prey by chemical cues, but insectivorous ambush foragers do not. The major clade Iguania includes numerous herbivores and omnivores; among them, two iguanid and one agamine species identify plant and animal foods by tongue flicking, and data suggest that the leiolepidine Uromastyx acanthinurus may as well. We conducted experiments on chemosensory response to food by the herbivorous U. aegyptius. When chemical stimuli were presented on cotton balls in experiment 1, the lizards exhibited greater responsiveness (tongue-flick attack scores) to chemical stimuli from crickets and a preferred plant food (dandelion flowers) than from deionized water. When chemical stimuli were on ceramic tiles in experiment 2, the lizards exhibited greater total tongue flicks to cricket stimuli than to any other stimuli, and to dandelion than to deionized water. Lizards bit more frequently in response to cricket and dandelion cues than to stimuli from a nonpreferred plant (carrot) and deionized water. Tongue-flick attack scores were greater in response to cricket and dandelion stimuli than to carrot or water stimuli. These findings are consistent with the hypothesis that herbivores, even those having ambush-foraging ancestors, use chemical cues to identify potential foods. The data support the hypothesis that chemosensory responses correspond to diet. Because most lizards are generalist predators, studies of herbivorous species can provide important information on possible evolutionary adjustment of chemosensory response to dietary shifts. Electronic Publication  相似文献   

2.
Abstract.  1. In cannibalistic populations, smaller individuals are subject to predation by larger conspecifics, and small individuals commonly alter their behaviour in response to cannibals. Little is known, however, about the underlying cues that trigger such responses and how the behavioural responses to conspecific cannibals differ from heterospecific predators.
2. This study tests which cues are used for the detection of conspecific predators in the larva of the dragonfly Plathemis lydia and how the behavioural response to cannibals differed from the response to heterospecific predators.
3. Individuals were exposed to chemical cues, visual cues, and a combination of both cues from conspecifics as well as no predator and heterospecific predator controls during which their activity and feeding rates were observed.
4. Individuals increased their activity, spatial movement and feeding behaviour in response to either visual or chemical cues from conspecific predators, which was opposite to responses displayed with cues from heterospecific predators. Interestingly, the responses to visual and chemical cues from conspecifics combined were weaker than to either cue in isolation and similar to the no cue control.
5. The results clearly indicate that individuals are able to use chemical and visual cues to detect even very subtle differences in phenotype of conspecific predators.
6. The opposite response in behaviour when exposed to conspecific cannibals vs. heterospecific predators suggests that the presence of cannibals will increase the mortality risk of small individuals due to heterospecific predation. This risk-enhancement is likely to have important consequences for the dynamics of predator–prey interactions.  相似文献   

3.
Abstract 1. Consequences of variation in food plant quality were estimated for a system consisting of two monophagous noctuid herbivores and three ichneumonid parasitoids.
2. In a natural population, pupal weights of the herbivores in this system, Nonagria typhae and Archanara sparganii , were found to be highly variable. Pupal weights increased strongly and consistently with the increase in the vigour of the host plant, Typha latifolia , providing support for the plant vigour hypothesis. Correspondingly, as the moths do not feed as adults, a strong, positive correlation between host vigour and fecundity of the herbivores would be expected.
3. There were strong and positive relationships between adult body sizes of the parasitoids and the sizes of their lepidopteran hosts. Moreover, a direct, positive link between plant quality and parasitoid size was documented.
4. For all three parasitoids, cascading effects of plant quality on body size were weaker than for the herbivores. Differences in the importance of adult feeding and oviposition behaviour suggest that dependence of fitness on body size is also weaker in the parasitoids than in the moths. It is therefore concluded that the numerical response of the herbivore population to a change in plant quality should exceed the corresponding response in the parasitoids.
5. The results of this work imply that variation in plant variables may affect performance of different trophic levels to a different extent. It is suggested that the importance of adult feeding for the reproductive success (capital vs. income breeding strategies) in both herbivores and parasitoids is an essential aspect to consider when predicting responses of such a system to changes in plant quality.  相似文献   

4.
Although much evidence reveals sexually dimorphic processing of chemosensory cues by the brain, potential sex differences at more peripheral levels of chemoreception are understudied. In plethodontid salamanders, the volume of the vomeronasal organ (VNO) is almost twice as large in males as compared to females, both in absolute and relative size. To determine whether the structural sexual dimorphism in VNO volume is associated with sex differences in other peripheral aspects of chemosensation, we measured sex differences in chemo-investigation and in responsiveness of the VNO to chemosensory cues. Males and females differed in traits influencing stimulus access to VNO chemosensory neurons. Males chemo-investigated (“nose tapped”) neutral substrates and substrates moistened with female body rinses more than did females. Compared to females, males had larger narial structures (cirri) associated with the transfer of substrate-borne chemical cues to the lumen of the VNO. These sex differences in chemo-investigation and narial morphology likely represent important mechanisms for regulating sex differences in chemical communication. In contrast, males and females did not differ in responsiveness of VNO chemosensory neurons to male mental gland extract or female skin secretions. This important result indicates that although males have a substantially larger VNO compared to females, the male VNO was not more responsive to every chemosensory cue that is detected by the VNO. Future studies will determine whether the male VNO is specialized to detect a subset of chemosensory cues, such as female body rinses or female scent marks.  相似文献   

5.
If tongue-flicking is important to lizards to sample chemical cues permitting identification of foods, tongue-flicking and subsequent feeding responses should be adjusted to match diet. This hypothesis can be examined for plant foods because most lizards are insectivores, but herbivory/omnivory has evolved independently in many lizard taxa. Here we present experimental data on chemosensory responses to chemical cues from animal prey and palatable plants by three species of the scincine lizards. When tested with chemical stimuli presented on cotton swabs, the insectivorous Eumeces fasciatus responded strongly to prey chemicals but not to chemicals from plants palatable to omnivorous lizards or to pungent or odorless control stimuli. Two omnivorous species, E. schneideri and Scincus mitranus, responded more strongly to chemical cues from both prey and food plants than to the control chemicals. All available data for actively foraging lizards, including these skinks, show that they are capable of prey chemical discrimination, and insectivores do not exhibit elevated tongue-flicking or biting responses to chemical cues from palatable plants. In all of the several species of herbivores/omnivores tested, the lizards show elevated responses to both animal and plant chemicals. We suggest two independent origins of both omnivory and plant chemical discrimination that may account for the evolution of diet and food chemical discriminations in the eight species of skinks studied, five of which are omnivores. All data are consistent with the hypothesis that acquisition of omnivory is accompanied by acquisition of plant chemical discrimination, but data on a broad diversity of taxa are needed for a definitive comparative test of the evolutionary hypothesis. J. Exp. Zool. 287:327-339, 2000.  相似文献   

6.
1. Here, we report morphological and life-historical changes in the cladoceran Daphnia ambigua in response to chemical cues released by the predatory water mite Piona chilensis . Both species are common inhabitants of southern temperate lakes.
2. We found significant differences in adult body size at first, second and third reproduction. Also, individuals exposed to kairomones had longer tail spines at first reproduction, and the resultant offspring had smaller bodies and shorter tail spines.
3. Exposure to mite cues did not exert effects on brood size at first reproduction, but decreased offspring number in subsequent broods. Similarly, only the second and third reproduction events were delayed by kairomone exposure.
4. The intrinsic population growth rate of predator-induced animals was lower than that in controls, but simulations based on a parameterized matrix model showed that the fitness costs could be overcome if the reported phenotypic responses reduced predation rate moderately. The gain in protection from predators needed to cancel out the reduction in fitness associated with predator cues was directly related to juvenile survival and fertility, and inversely related to adult survival.
5. This is the first work reporting phenotypic plasticity in Cladocera in response to kairomones released by water mites, which are conspicuous predators in many austral fresh waters.  相似文献   

7.
Actively foraging lizards are capable of identifying prey using only chemical cues sampled by tongue-flicking, and the relatively few omnivorous and herbivorous lizards tested similarly can identify both animal and plant foods from chemical cues. Whether lizards that eat plants respond to cues specific to preferred plant types and whether there is geographic variability in responses to cues from various plants correlated with the importance of those plants in local diets is unknown. In three populations of an omnivorous lacertid, the Balearic lizard Podarcis lilfordi, we studied chemosensory sampling and feeding responses to chemical cues from plant and animal foods presented on cotton swabs. Each lizard population is endemic to one islet off the coast of Menorca, Balearic Islands, Spain. Lizards in all three populations discriminated chemical cues from plant and animal foods from control substances. Our results extend findings of prey chemical discrimination and plant chemical discrimination in omnivores, increasing confidence that correlated evolution has occurred between plant diet and chemosensory response to palatable plants. There were no consistent differences among populations in tongue-flicking and biting responses to stimuli from flowers of syntopic and allopatric plant species. The lizards may respond to cues indicative of palatability in a wide range of plant species rather than exhibiting strong responses only to locally available plant species. Nevertheless, tongue-flicking and biting frequencies varied among plant species, perhaps indicating food preferences. In addition, there were differences among populations in tongue-flick rates, latency to bite, and licking behavior. Licking was observed in only one lizard population as a response to floral chemicals from only one of the plants species tested, raising the possibility of a population-specific linkage between identification of a particular plant species and performance of an appropriate feeding response.  相似文献   

8.
In Lepidoptera, host plant selection is first conditioned by oviposition site preference of adult females followed by feeding site preference of larvae. Dietary experience to plant volatile cues can induce larval and adult host plant preference. We investigated how the parent’s and self-experience induce host preference in adult females and larvae of three lepidopteran stem borer species with different host plant ranges, namely the polyphagous Sesamia nonagrioides, the oligophagous Busseola fusca and the monophagous Busseola nairobica, and whether this induction can be linked to a neurophysiological phenotypic plasticity. The three species were conditioned to artificial diet enriched with vanillin from the neonate larvae to the adult stage during two generations. Thereafter, two-choice tests on both larvae and adults using a Y-tube olfactometer and electrophysiological (electroantennography [EAG] recordings) experiments on adults were carried out. In the polyphagous species, the induction of preference for a new olfactory cue (vanillin) by females and 3rd instar larvae was determined by parents’ and self-experiences, without any modification of the sensitivity of the females antennae. No preference induction was found in the oligophagous and monophagous species. Our results suggest that lepidopteran stem borers may acquire preferences for new olfactory cues from the larval to the adult stage as described by Hopkins’ host selection principle (HHSP), neo-Hopkins’ principle, and the concept of ‘chemical legacy.’  相似文献   

9.
The use of general foraging kairomones in a generalist parasitoid   总被引:1,自引:0,他引:1  
Almost no comparative studies are available on the use of general and specific infochemical cues by generalist parasitoids with hosts from different families feeding on host plants also from different families. Based on literature, two hypotheses were developed and tested with host recognition cues used by the larval parasitoid Lariophagus distinguendus . This generalist parasitizes beetle species from different families developing in seeds of plant species from the Poaceae and Fabaceae. The first hypothesis predicts that for initial encounters with host species, natural enemies should innately use general cues, which are common to all hosts and their food plants. The second hypothesis predicts that natural enemies should learn specific cues from host plant and host after experience with a host species. The first hypothesis was partly confirmed. L. distinguendus innately reacted to faecal cues from several host species and chemical analyses of faeces from these hosts revealed the common occurrence of chemicals that are used for host recognition by L. distinguendus . In disagreement with the first hypothesis, parasitoids did not innately respond to cues from plant seeds. Preference experiments on the influence of experience demonstrated an increased host recognition response towards a host after experience with it. In support of the second hypothesis, L. distinguendus females learned specific cues from herbivore-damaged wheat, rice and cowpea seeds and from the faeces of the bean weevil Callosobruchus maculatus .  相似文献   

10.
Adjustment of chemosensory response to diet should be apparent in evolutionary changes corresponding to dietary shifts. Because most lizards are generalist predators of small animals, relationships between chemosensory behavior and diet are difficult to detect. Nevertheless, the evolution of herbivory by a small number of lizards provides an opportunity to detect any corresponding change in response to plant chemicals. I studied tongue-flicking and biting by the large, herbivorous scincid lizard Corucia zebrata in response to chemical cues from crickets, romaine lettuce, and control stimuli presented on cotton swabs. The skinks exhibited significantly stronger response to plant and animal chemicals than to controls for several variables: greater number of individuals that bit swabs, shorter latency to bite, greater rate of tongue-flicks, and greater tongue-flick attack score. The clearest differences were observed for tongue-flick attack score, a composite variable that combines the effects of tongue-flicking and biting. An insectivorous member of the same subfamily, Scincella lateralis, shows strong tongue-flicking and biting response to chemical prey cues, but not to plant chemicals. This suggests that response to plant chemicals by C. zebrata may have evolved in tandem with the incorporation of plants into the diet and that response to cricket chemicals has been retained, perhaps due to similarities between plant and animal food. The findings support the hypothesis that dietary shifts induce corresponding changes in chemosensory response, but provide only a single independent contrast for a study of correlated evolution between plant diet and chemosensory response to plants. J. Exp. Zool. 286:372-378, 2000.  相似文献   

11.
Argulus coregoni is an ectoparasite primarily infesting freshwater salmonids. Sexually reproducing parasites such as A. coregoni are confronted with a dilemma between finding a mate and the costs involved in doing so; if mating partners are unavailable on a host, by leaving to search for a mate on a new host, the parasite is exposed to risks such as predation and energy loss. The utilization of chemical cues could enhance the probability of finding a host and/or a suitable mating partner and thus decrease the level of costs associated with detachment from the host. In this study we constructed a Y-maze arena to determine if adult A. coregoni respond to mate- and host-related chemical cues. We also tested the directional response towards light, since it has been suggested that photic cues are the most important cues for juvenile A. coregoni locating a host. Our results showed that both sexes were attracted to light and fish odour. Free-swimming A. coregoni males responded to chemical cues produced by adult females but not vice versa. The hierarchy of these stimuli was analyzed by pitting the cues against one another in the Y-maze, showing that light was the most salient stimulus for both male and female parasites. Moreover, male parasites were more strongly attracted towards light and fish odour than female odour. In another experiment in a semi-natural environment, we examined whether the ability of A. coregoni males to detect female odour influences their host choice. Free-swimming males did not preferentially infest fish infected with female parasites over parasite-free fish. We suggest that a hierarchy of stimulus responses exists, whereby free-swimming parasites first respond to host-related signals and most dominantly to visual cues. However, cues connected to mate finding may become a priority for late adult stages and/or once the parasite has attached to the host.  相似文献   

12.
The behavioural responses of parasitic wasps to chemical cues from their hosts and host plants are known to be affected by genetic and environmental components. In a previous study of the codling moth ectoparasitoid Hyssopus pallidus, we found that the response of adult parasitoids to the frass of their host caterpillars depended on a learning process involving plant cues. In the present study, we investigated how and when learning takes place. A series of experiments was conducted involving exposure of parasitoids to fruit cues at different developmental stages. While parasitoids were not able to learn the fruit cues in the adult stage, exposure to fruit odour at early preimaginal stages significantly increased the adult response to frass from fruit-fed caterpillars. The olfactory memory persisted through metamorphosis, with a retention time of 14 days. Preimaginal learning was not confined to fruit cues but was also demonstrated for a host- and fruit-independent cue, menthol. Parasitoids exposed to menthol odour at the egg and larval stages no longer showed negative responses as adults. Sensitization to fruit cues and habituation to menthol are considered to be the mechanisms involved. This study provides evidence of true preimaginal learning of olfactory cues in a parasitic wasp.  相似文献   

13.
Hunger plays a crucial role in insect feeding behavior, however food deprivation is rarely considered when insect responses to plant host and related chemical stimuli are investigated. Here we assessed, by means of experiments with Y-tube olfactometer, the effect of food deprivation time on the response of a specialist (Xanthogaleruca luteola) and a generalist (Diabrotica speciosa) herbivore beetle species (Coleoptera: Chrysomelidae) to odor cues of their respective host plants. Increasing food deprivation periods enhanced responses to host plant odor in both species, with insects remaining for longer in the olfactometer arm carrying plant odor than in the control, moving less frequently between olfactometer arms, and being more efficient in moving towards the plant odor as their first choice. These trends were less significant in the generalist species, which also required a longer fasting threshold (48 h) in comparison with the specialist (8 h). Our results, showing that prior food deprivation time can influence insect herbivore responsiveness to plant stimuli and that those effects may vary between species, highlight the risk of neglecting this factor in studies involving insect responses to host or chemical stimuli.  相似文献   

14.
All organisms must interact with their environment, responding in behavioral, chemical, and other ways to various stimuli throughout their life cycles. Characterizing traits that directly represent an organism's ability to sense and react to their environment provides useful insight into the evolution of life‐history strategies. One such trait for the nematode Pristionchus pacificus, chemosensation, is involved in navigation to beetle hosts. Essential for the survival of the nematode, chemosensory behavior may be subject to variation as nematodes discriminate among chemical cues to complete their life cycle. We examine this hypothesis using natural isolates of P. pacificus from La Réunion Island. We select strains from a variety of La Réunion beetle hosts and geographic locations and examine their chemoattraction response toward organic compounds, beetle washes, and live beetles. We find that nematodes show significant differences in their response to various chemicals and are able to chemotax to live beetles in a novel assay. Further, strains can discriminate among different cues, showing more similar responses toward beetle washes than to organic compounds in cluster analyses. However, we find that variance in chemoattraction response is not significantly associated with temperature, location, or beetle host. Rather, strains show a more concerted response toward compounds they most likely directly encounter in the wild. We suggest that divergence in odor‐guided behavior in P. pacificus may therefore have an important ecological component.  相似文献   

15.
The vomeronasal pathway in rodents runs parallel to the main olfactory pathway and mediates responses to different classes of chemosensory stimuli. Both olfactory systems can converge and synergize to control reproductive behaviors and hormonal changes triggered by chemosensory cues. Novel experimental approaches expressing genetic transneuronal tracers in hypothalamic neurons regulating reproduction have set the stage to analyze how chemosensory inputs are integrated in the brain to elicit reproductive behaviors and hormonal changes, and how neuroendocrine status might modulate susceptibility to chemosensory cues.  相似文献   

16.
Specialist predators may respond strongly to sensory cues from preferred prey, but responses by generalist predators, although predicted to be less specific, are poorly known. Among squamate reptiles, diet and strength of response to chemical prey cues covary geographically in snakes that are specialist predators. There have been no previous studies of correspondence between diet and chemosensory response in lizards that are prey generalists. Actively foraging lizards discriminate between prey chemicals and control substances. It has been speculated that differential responses among prey species are unlikely in typical species that are dietary generalists. We examined this relationship in Podarcis lilfordi, an omnivorous lacertid that consumes a wide variety of animal prey. In experiments in which chemical stimuli were presented on cotton swabs, lizards responded more strongly to chemicals from a broad spectrum of prey types than to deionized water, an odorless control. These findings plus previous data showing that P. lilfordi is capable of prey chemical discrimination suggest that P. lilfordi can identify a wide range of potential prey using chemical cues. However, there was no evidence of differential response to stimuli among prey species, even in comparisons of prey included in the natural diet and potential prey not in the diet. The results, although limited to a single species, are consistent with the hypothesis that lizard species that are prey generalists do not exhibit the differential response strengths to chemical prey cues observed in snakes that have more specialized diets. Received in revised form: 17 July 2001 Electronic Publication  相似文献   

17.
When important ecological factors change predictably during the life of an organism, the ontogeny of related behaviors must be timed to maintain appropriate behavioral responsiveness to current ecological conditions. In the brown iguana, Ctenosaura pectinata , hatchlings in natural populations eat primarily insects, consuming little plant matter, whereas adults eat primarily plants, consuming some insects as well. We conducted laboratory experiments on diet preferences and responses to chemical cues that the lizards sampled by tongue-flicking and used to identify food. All hatchlings ate crickets, but only one of six ate romaine lettuce. They responded strongly to chemical cues from prey, as indicated by elevated tongue-flick rates, but not from romaine lettuce. All older individuals ate both crickets and romaine lettuce. They responded much more strongly to chemical cues from both crickets and romaine lettuce than to control chemicals, as indicated by higher proportions of individuals that bit and higher tongue-flick attack scores.
Thus, an ontogenetic change to increased responsiveness to plant chemical stimuli was coordinated with an ontogenetic change to an herbivorous diet. The mechanisms underlying these ontogenetic changes are unknown, but folivory may be unprofitable before juveniles acquire intestinal flora that degrade cellulose by ingestion of feces of adult conspecifics. Possible mechanisms are discussed, including the detection of chemical cues from appropriate food plants during consumption of feces from older individuals. Studies of other squamate reptiles suggest that exposure to these chemicals might affect both future responsiveness to the chemical cues and a tendency to eat the corresponding plants.  相似文献   

18.
A strong correlation is shown between taste cell inputs and phagostimulatory outputs with predominant dietary pollen amino acids for western corn rootworm, Diabrotica virgifera virgifera. Behavioral and electrophysiological dose-response profiles in adult beetles are presented for five major free amino acids in host pollens. Differential responses were found with strongest phagostimulation and sensory response elicited by L-alanine and L-serine, followed in order by L-proline and beta-alanine. gamma-Aminobutyric acid gave the weakest and most sporadic response. ED(50) values for phagostimulation and chemosensory input were 28.3nmol/disk and 13mM, respectively, for L-alanine and 17nmol/disk and 11mM, respectively, for serine. Threshold values for the responses were approximately 1-2mM. These behavioral and chemosensory dose-response ranges correspond closely to levels of free amino acids present in host plant pollens. Use of these response values in development of a pollen chemosensory code for western corn rootworm feeding is discussed.  相似文献   

19.
The pea aphid Acyrthosiphon pisum Harris has been shown to produce an increasing proportion of winged morphs among its offspring when exposed to natural enemies, in particular hoverfly larvae, lacewing larvae, adult and larval ladybirds and aphidiid parasitoids. While these results suggest that wing induction in the presence of predators and parasitoids is a general response of the pea aphid, the cues and mechanisms underlying this response are still unclear. Tactile stimuli and the perception of chemical signals as well as visual signals are candidates for suitable cues in the presence of natural enemies. In this paper the hypothesis that the aphids' antennae are crucial for the wing induction in the presence of natural enemies is tested. Antennae of pea aphids were ablated and morph production was scored when aphids were reared either in the presence or the absence of predatory lacewing larvae over a six-day period. Ablation of antennae resulted in a drastic drop in the proportion of winged morphs among the offspring, both in the presence and the absence of a predator whereas predator presence increased wing induction in aphids with intact antennae, as reported in previous experiments. The results show that antennae are necessary for wing induction in the presence of natural enemies. Critical re-examination of early work on the importance of aphid antennae and tactile stimuli for wing induction suggests that a combination of tactile and chemical cues is likely to be involved not only in predator-induced wing formation but also for wing induction in response to factors such as crowding in the aphid colony.  相似文献   

20.
The initial ingestion rates of Isochrysis galbana and Dunaliella primolecta by Oxyrrhis populations precultured separately on these phytoplanktonic prey were quantified and related to the chemosensory responses elicited in Oxyrrhis by the filtrate from live and heat killed prey cells. Despite evidence to suggest that Oxyrrhis shows specific distaste towards Isochrysis (but not Dunaliella) such that consumption of N-deplete Isochrysis halted in grazing experiments, positive chemotaxis was observed towards the cell-free filtrate from both species. These results suggest that while tactile cues encountered upon contact with Isochrysis and Dunaliella may enable Oxyrrhis to recognise differences between the two species, the chemosensory responses observed towards dissolved chemical cues derived from potential prey items are non-specific. That chemosensory and ingestion behaviours do not appear to be tightly coupled raises important questions concerning the ecological implications of chemotaxis in Oxyrrhis. Chemotaxis may enhance the overall efficiency of prey detection; however, when confronted with a variety of chemical stimuli (i.e. from a mixed-prey assemblage) Oxyrrhis may be unable to discern the difference between cues that originate from high quality, poor quality (or even toxic) prey items. The positive chemosensory responses observed towards a range of synthetic amino acid, amino sugar and ammonium solutions suggest that chemotaxis could facilitate the detection of solute gradients in prey deplete environments for direct exploitation via osmotrophy. Furthermore, the positive chemotaxis elicited by regenerated ammonium and compounds derived from heat killed conspecifics suggests that Oxyrrhis may release chemical cues which induce cannibalistic behaviour as a ‘life boat mechanism’ when no other suitable (non-self) prey items are available. Further work is required to explore the nature of the chemosensory apparatus and signal transduction pathways that mediate responses to dissolved chemical stimuli in Oxyrrhis and to investigate other sensory mechanisms that enable cells to recognise and differentiate between potential prey items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号