首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Hori  S Osawa  K Murao    H Ishikura 《Nucleic acids research》1980,8(22):5423-5426
The nucleotide sequence of ribosomal 5S RNA from Micrococcus lysodeikticus is pGUUACGGCGGCUAUAGCGUGGGGGAAACGCCCGGCCGUAUAUCGAACCCGGAAGCUAAGCCCCAUAGCGCCGAUGGUUACUGUAACCGGGAGGUUGUGGGAGAGUAGGUCGCCGCCGUGAOH. When compared to other 5S RNAs, the sequence homology is greatest with Thermus aquaticus, and these two 5S RNAs reveal several features intermediate between those of typical gram-positive bacteria and gram-negative bacteria.  相似文献   

2.
The nucleotide sequence of 5S rRNA from Mycoplasma capricolum is more similar to that of the gram-positive bacteria than that of the gram-negative bacteria. The presence of two copies of rRNA genes in M. capricolum genome has been demonstrated. The two different rRNA gene clusters have been cloned in E. coli plasmid vectors and analyzed for the rRNA gene organizations, demonstrating that the gene arrangement is in the order of 16S, 23S, and 5S rDNA. The ribosomes of M. capricolum contain about 30 species of proteins in 50S and 20 in 30S subunits. The number and size of the ribosomal proteins are not significantly different from those of other eubacterial ribosomes.  相似文献   

3.
16S rRNA序列分析法在大气微生物检测中的应用   总被引:13,自引:0,他引:13  
随首微生物核糖体数据库的日益完善,16S rRNA序列分析技术已应用于海洋、湖泊和土壤等环境微生物多样性的分析,但尚未见其在大气微生物菌群分析中的应用报道。本研究选择5株大气中采集分离的菌株,通过细胞16S rRNA通过引物PCR扩增其对应序列,直接对PCR产物进行测序,分析鉴定其对应细胞的种属,并将该结果同细胞表型鉴定、全自动微生物分析仪以及相色谱分析结果加以比较。结果表明16S rRNA序列分  相似文献   

4.
《FEBS letters》1987,213(2):301-303
The 5 S rRNA sequence was determined for the bacterium Herpetosiphon strain Senghas Wie 2. It is the first 5 S RNA sequence reported for a member of the eubacterial phylum defined by green non-sulfur bacteria. The sequence fits into a consensus secondary structure model for eubacterial 5 S RNA. At four positions, the sequence shows substitutions with respect to strongly conserved nucleotides found in other hitherto examined eubacterial 5 S RNAs.  相似文献   

5.
6.
The nearly complete 16S rRNA gene sequences for oral Gram-negative anaerobic motile bacteria, Centipeda periodontii, Selenomonas sputigena and Selenomonas species (formerly S. sputigena type strain), were determined in order to unveil their relationship to other oral motile bacteria. To determine the phylogenetic characterization of these bacteria, their 16S rRNA gene sequences were obtained and compared with those from the ribosomal sequence databases previously reported. The 16S rRNA gene sequences of these bacteria were similar to those of Selenomonas ruminantium and Schwartzia succinivorans isolated from rumens, and to Pectinatus cerevisiiphilus isolated from spoiled beer. Among oral bacteria, the nucleotide sequence analysis of these bacteria revealed high nucleotide similarity to Veillonella species, whereas low similarity to oral motile bacteria such as Campylobacter species. Phylogenetic analysis clearly confirmed that C. periodontii and two Selenomonas species were classified as relatives of a group besides Selenomonas, Schwartzia, and Pectinatus species, and not as close relatives to oral motile bacteria, such as Campylobacter species. These results suggest that such oral Gram-negative anaerobic motile bacteria are close relatives of oral bacteria.  相似文献   

7.
从发生急性流行性传染病的斑点叉尾肝、肾分离到一高致病性的菌株(CCF00024),经人工感染实验证实其为该病的病原菌。对该菌的形态、生理生化及16S rDNA序列分析结果表明,其为非发酵型,严格需氧,革兰氏阴性杆菌,极生多鞭毛,对除麦芽糖和甘露糖以外的多种糖类不能利用产酸,氧化酶阴性,DNA酶、蛋白酶、脲酶、赖氨酸脱羧酶阳性,MR阴性。在以该菌16S rDNA序列(GenBank登录号AY970826)和GenBank及RDP数据库内同源性较高的细菌16S rDNA序列构建的系统发育树中,分离菌CCF00024与嗜麦芽寡养单胞菌(Stenotrophomonasmaltophilia)聚在一簇,特别是与S.maltophiliaM5-1的同源性最高,其序列相似性达99.6%,结合形态和生理生化特点将其鉴定为嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)。  相似文献   

8.
The nucleotide sequence of 5 S ribosomal RNA (rRNA) of type strain Sulfobacillus thermosulfidooxidans VKM B-1269 was determined. This organism represents a group of moderately thermophilic acidophilic chemolithotrophic bacteria, able to use ferrous and sulfur compounds as the sole energy source. 5 S rRNA of this bacterium is drastically different from all other known bacterial 5 S rRNA sequences. It is suggested that S. thermosulfidooxidans represents a new lineage of bacterial evolution, that diverged from other bacteria at an early step of their evolution.  相似文献   

9.
The complete nucleotide sequence of tRNAPhe and 5S RNA from the photosynthetic bacterium Rhodospirillum rubrum has been elucidated. A combination of in vitro and in vivo labelling techniques was used. The tRNAPhe sequence is 76 nucleotides long, 7 of which are modified. The primary structure is typically prokaryotic and is most similar to the tRNAPhe of Escherichia coli and Anacystis nidulans (14 differences of 76 positions). The 5S ribosomal RNA sequence is 120 nucleotides long and again typical of other prokaryotic 5S RNAs. The invariable GAAC sequence is found starting at position 45. When aligned with other prokaryotic 5S RNA sequences, a surprising amount of nucleotide substitution is noted in the prokaryotic loop region of the R. rubrum 5S RNA. However, nucleotide complementarity is maintained reinforcing the hypothesis that this loop is an important aspect of prokaryotic 5S RNA secondary structure. The 5S and tRNAPhe are the first complete RNA sequences available from the photosynthetic bacteria.  相似文献   

10.
从深海样品ESO109中分离到一株具有高内切葡聚糖酶活力的细菌DY3,16SrDNA序列分析表明该菌与交替假单胞菌属(Pseudoalteromonas sp.)的Pseudoalteromonas citrea和Pseudoalteromonas elyakovii的同源性为99%。PCR扩增DY3的内切葡聚糖酶基因celX全长1479bp,编码一个492AA的蛋白质。酶的氨基酸序列分析表明CelX与Rseudoalteromonas haloplanktis的内切葡聚糖酶CelG有95%的相似性,包括一个糖基水解酶家族5的催化结构域,一个连接序列和位于C端的的CBM5结构域。对酶性质的初步研究发现,CelX的最适温度为40℃,酶的最适pH在6~7之间。  相似文献   

11.
The nucleotide sequences of the 5S ribosomal RNAs of the bacteria Agrobacterium tumefaciens, Alcaligenes faecalis, Pseudomonas cepacia, Aquaspirillum serpens and Acinetobacter calcoaceticus have been determined. The sequences fit in a generally accepted model for 5S RNA secondary structure. However, a closer comparative examination of these and other bacterial 5S RNA primary structures reveals the potential of additional base pairing and of multiple equilibria between a set of slightly different alternative secondary structures in one area of the molecule. The phylogenetic position of the examined bacteria is derived from a 5S RNA sequence alignment by a clustering method and compared with the position derived on the basis of 16S ribosomal RNA oligonucleotide catalogs.  相似文献   

12.
We have determined the nucleotide sequences of the 5 S rRNAs of three thermophilic bacteria: the archaebacterium Sulfolobus solfataricus, also named Caldariella acidophila, and the eubacteria Bacillus acidocaldarius and Thermus aquaticus. A 5 S RNA sequence for the latter species had already been published, but it looked suspect on the basis of its alignment with other 5 S RNA sequences and its base-pairing pattern. The corrected sequence aligns much better and fits in the universal five helix secondary structure model, as do the sequences for the two other examined species. The sequence found for Sulfolobus solfataricus is identical to that determined by others for Sulfolobus acidocaldarius. The secondary structure of its 5 S RNA shows a number of exceptional features which distinguish it not only from eubacterial and eukaryotic 5 S RNAs, but also from the limited number of archaebacterial 5 S RNA structures hitherto published. The free energy change of secondary structure formation is large in the three examined 5 S RNAs.  相似文献   

13.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

14.
黄京飞  刘次全 《动物学报》1992,38(3):334-338
本文根据分形理论的原理和方法,在对现行的计算核酸序列分维的方法进行修改的基础上,对各类生物的80余种5SrRNA序列的分维进行了计算,并结合耗散结构理论就其分维与分子进化的关系问题进行了研究和探讨。作者认为,5SrRNA序列的分维与其分子进化间的关系是一种复杂的非线性关系,在分子进化的过程中,序列的分维表现为随机涨落。  相似文献   

15.
16.
Summary The primary structure of 5S ribosomal RNA has been determined in five species belonging to the genusMycobacterium and inMicrococcus luteus. The sequences of 5S RNAs from Actinomycetes and relatives point to the existence in this taxon of a bulge on the helix that joins the termini of the molecule. An attempt was made to reconstruct bacterial evolution from a sequence dissimilarity matrix based on 142 eubacterial 5S RNA sequences and corrected for multiple mutation. The algorithm is based on weighted pairwise clustering, and incorporates a correction for divergent mutation rates, as derived by comparison of sequence dissimilarities with an external reference group of eukaryotic 5S RNAs. The resulting tree is compared with the eubacterial phylogeny built on 16S rRNA catalog comparison. The bacteria for which the 5S RNA sequence is known form a number of clusters also discernible in the 16S rRNA phylogeny. However, the branching pattern leading to these clusters shows some notable discrepancies with the aforementioned phylogeny.  相似文献   

17.
18.
The nucleotide sequence of 5S rRNA from the elder aphid. Acyrthosiphon magnoliae was determined by using postlabeling sequencing techniques. The aphid 5S rRNA consists of 120 nucleotides and the sequence differs from those of Bombyx and Drosophila 5S rRNAs in 14 and 16 positions, respectively. A secondary structure model based on the sequence has two distinctive features : the helix I is shorter and the total free energy lower. Judging from the thermal profile, the aphid 5S rRNA likely assumes a conformation somewhat different from those of the other two insects.  相似文献   

19.
The phylogenetic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy which does not rely on cultivation of the resident microorganisms. Small-subunit rRNA genes (16S rDNAs) were directly amplified from the mixed-population DNA of the termite gut by the PCR and were clonally isolated. Analysis of partial 16S rDNA sequences showed the existence of well-characterized genera as well as the presence of bacterial species for which no 16S rDNA sequence data are available. Of 55 clones sequenced, 45 were phylogenetically affiliated with four of the major groups of the domain Bacteria: the Proteobacteria, the spirochete group, the Bacteroides group, and the low-G+C-content gram-positive bacteria. Within the Proteobacteria, the 16S rDNA clones showed a close relationship to those of cultivated species of enteric bacteria and sulfate-reducing bacteria, while the 16S rDNA clones in the remaining three groups showed only distant relationships to those of known organisms in these groups. Of the remaining 10 clones, among which 8 clones formed a cluster, there was only very low sequence similarity to known 16S rRNA sequences. None of these clones were affiliated with any of the major groups within the domain Bacteria. The 16S rDNA gene sequence data show that the majority of the intestinal microflora of R. speratus consists of new, uncultured species previously unknown to microbiologists.  相似文献   

20.
The nucleotide sequences of 5S rRNA from seven denitrifying bacteria have been determined. Based on these sequences and those reported in the literature (including two denitrifiers), a phylogenic tree of 104 eubacterial 5S rRNA sequences has been constructed to establish the position of the denitrifying bacteria. These bacteria belong to either one of the three major subgroups of gram-negative bacteria. The grouping based on 5S rRNA sequences is almost compatible with the type of the nitrite reductases, with the one apparent exception of Paracoccus denitrificans ATCC 13543. Moreover, the separation time of most of the denitrifying bacteria from other non-denitrifying bacteria belonging to the same subgroup is recent. These results suggest that the denitrifying systems in these bacteria would have developed polyphyletically, and not so anciently, during eubacterial evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号