首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multidrug resistance (MDR) to cancer therapy is frequently associated with the over-expression of the multidrug transporter MDR1 gene product P-glycoprotein (Pgp) in several types of human tumours. Various chemosensitizers have been used to inhibit Pgp activity but toxicity limits their clinical application. Di(2-ethylhexyl)phthalate (DEHP) is a plasticizer that is released from polyvinyl chloride (PVC) medical devices. Therefore, cancer patients undertaking chemotherapy are exposed to a clinically important amount of DEHP through blood and blood component transfusions, apheresis products, intravenous chemotherapy, parenteral nutrition and other medical treatments. The present study was designed to investigate the effects of DEHP on transport activity and expression of Pgp in order to evaluate its potential use as a chemosensitizer in cancer therapy. Human doxorubicin (doxo) resistant sarcoma cells (MES-SA/Dx5) that over-express Pgp were treated with different doses of doxo (2, 4 and 8 μM) in the presence or absence of various concentrations of DEHP (3, 6 and 12 μM) that were clinically achievable in vivo. Our results show that co-treatment with 2, 4 and 8 μM doxo in the presence of the lowest concentration of DEHP (3 μM) enhanced significantly doxo accumulation in MES-SA/Dx5 cells and, consistently increased the sensitivity to doxo, when compared to controls receiving only doxo. In contrast, higher DEHP concentrations (6 and 12 μM) induced MES-SA/Dx5 to extrude doxo decreasing doxo cytotoxicity toward resistant cells below control values. These results are consistent with the increase in Pgp expression levels in parental MES-SA cells treated with 3, 6 and 12 μM DEHP for 24 h and compared to untreated controls. All in all, these findings suggest a potential clinical application of DEHP as a chemosensitizer to improve effectiveness of the antineoplastic drugs in MDR human tumours.  相似文献   

2.
J Sun  CA Yeung  NN Co  TY Tsang  E Yau  K Luo  P Wu  JC Wa  KP Fung  TT Kwok  F Liu 《PloS one》2012,7(8):e40720
Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5'-serial truncation analysis of the MDR1 promoter defined a region from position -450 to -193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.  相似文献   

3.
Synthesis and anticancer evaluation of vitamin K(3) analogues   总被引:3,自引:0,他引:3  
Novel vitamin K(3) analogues were synthesized and evaluated for their anticancer activity. Compound 6, 9, 10, 11, 14, and (+/-)15 demonstrated a strong inhibitory activity against the tumor cells of A-549, Hep G2, MCF7, MES-SA, MES-SA/Dx5, MKN45, SW-480, and TW-039. Compound (+/-)15 displayed potent tumor cell cytotoxicity, and compound 14 selectively affected MCF7, even though it did not influence normal cells Detroit551 and WI-38. Compound (+/-)15 inhibited MES-SA and MES-SA/Dx5, and this specific result shows that compound (+/-)15 may become a good anticancer drug candidate.  相似文献   

4.
Drug resistance is a common cause of failure in cancer chemotherapy treatments. In this study, we used a pair of uterine sarcoma cancer lines, MES-SA, and the doxorubicin-resistant MES-SA/Dx5 as a model system to examine resistance-dependent cellular responses and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes induced by doxorubicin treatment and doxorubicin resistance. A proteomic study revealed that doxorubicin-exposure altered the expression of 87 proteins in MES-SA cells, while no significant response occurred in similarly treated MES-SA/Dx5 cells, associating these proteins with drug specific resistance. By contrast, 37 proteins showed differential expression between MES-SA and MES-SA/Dx5, indicating baseline resistance. Further studies have used RNA interference, cell viability analysis, and analysis of apoptosis against asparagine synthetase (ASNS) and membrane-associated progesterone receptor component 1 (mPR) proteins, to monitor and evaluate their potency on the formation of doxorubicin resistance. The proteomic approach allowed us to identify numerous proteins, including ASNS and mPR, involved in various drug-resistance-forming mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of doxorubicin-resistant uterine cancer.  相似文献   

5.
The preparation and cytotoxic activity of 4′-azido-3′-bromo-3′-deamino-4′-deoxydaunorubicin is described. The new compound was found to be less active in vitro than adriamycin against L1210 and the sensitive cell lines KB-3-1 and MES-SA, but retained interesting cytotoxicity against the adriamycin resistant subline KB-A1 and the multidrug resistant MES-SA/Dx5 subline.  相似文献   

6.
Sequestration of drugs in intracellular vesicles has been associated with multidrug-resistance (MDR), but it is not clear why vesicular drug accumulation, which depends upon intracellular pH gradients, should be associated with MDR. Using a human uterine sarcoma cell line (MES-SA) and a doxorubicin (DOX)-resistant variant cell line (Dx-5), which expresses p-glycoprotein (PGP), we have addressed the relationship between multidrug resistance, vesicular acidification, and vesicular drug accumulation. Consistent with a pH-dependent mechanism of vesicular drug accumulation, studies of living cells vitally labeled with multiple probes indicate that DOX and daunorubicin (DNR) predominately accumulate in lysosomes, whose lumenal pH was measured at < 4.5, but are not detected in endosomes, whose pH was measured at 5.9. However, vesicular DOX accumulation is more pronounced in the drug-sensitive MES-SA cells and minimal in Dx5 cells even when cellular levels of DOX are increased by verapamil treatment. While lysosomal accumulation of DOX correlated well with pharmacologically induced differences in lysosome pH in MES-SA cells, lysosomal accumulation was minimal in Dx5 cells regardless of lysosomal pH. We found no differences in the pH of either endosomes or lysosomes between MES-SA and Dx5 cells, suggesting that, in contrast to other MDR cell systems, the drug-resistant Dx5 cells are refractory to pH-dependent vesicular drug accumulation. These studies demonstrate that altered endomembrane pH regulation is not a necessary consequence of cell transformation, and that vesicular sequestration of drugs is not a necessary characteristic of MDR.  相似文献   

7.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

8.
Structure of the carbohydrate units of human amniotic fluid fibronectin   总被引:3,自引:0,他引:3  
Human amniotic fluid fibronectin was found to contain three types of carbohydrates: complex-type N-glycosidic glycans, lactosaminoglycans, and O-glycosidic glycans. The structures of the complex-type glycans were established by carbohydrate and methylation analysis, Smith degradation, sequential exoglycosidase treatments, lectin chromatography, and DEAE-Sephadex chromatography. Lactosaminoglycans were analyzed by fast atom bombardment mass spectrometry, and the O-glycosidically-linked oligosaccharides by gas-liquid chromatography-mass spectrometry and high-pressure liquid chromatography. The results show that amniotic fluid fibronectin contains 2 mol of biantennary and 2-3 mol of triantennary, complex-type N-glycosidic glycans. Unlike the N-glycosidic glycans of human adult plasma fibronectin, which contain only traces of fucose and are completely sialylated, the glycans from amniotic fluid fibronectin are fucosylated and only partially sialylated. The complex-type N-glycosidic glycans present in amniotic fluid fibronectin also include a fractional amount (0.1 mol) of glycans with a polylactosaminyl structure. In addition, 4 mol of O-glycosidic oligosaccharides, which have not previously been described in fibronectins, were found in amniotic fluid fibronectin. The major oligosaccharides in this fraction have the structures Gal beta 1----3GalNAcol, NeuNAc alpha 2----3Gal beta 1----3GalNAcol and NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcol. O-glycosidically linked oligosaccharides were also detected in human adult plasma fibronectin but in smaller amounts than in amniotic fluid fibronectin. These results show that amniotic fluid fibronectin differs from plasma fibronectin with regard to the number of glycans attached to the polypeptide and that the glycans present in these two fibronectins differ in structure.  相似文献   

9.
Bifunctional, heterodimeric compounds were synthesized to test their ability to create polyvalent arrays between DNA and microtubules in cells. Each dimer was examined for the capacity to bind to microtubules and for cytotoxicity against MES-SA and MES-SA/Dx5 cell lines.  相似文献   

10.
Human seminal plasma is a complex mixture of proteins, glycoproteins, peptides, glycopeptides, and prostaglandins secreted by organs of the male reproductive tract. The components of this fluid have been implicated in the suppression of immune response, agonistic effects on sperm-egg binding, and promotion of successful implantation of the human embryo. Fractionation followed by biophysical analyses revealed that free oligosaccharides constitute a major component of the total glycoconjugates within seminal plasma. Significant findings of our analyses include the following: (i) the concentration of free oligosaccharides is 0.3-0.4 mg/ml; (ii) mono- and difucosylated forms of the disaccharide lactose are major components; (iii) many of the remaining oligosaccharides are also rich in fucose and carry Lewis(x) and/or Lewis(y) epitopes; (iv) a subset of the oligosaccharides express the reducing end sequence (GlcNAcbeta1-3/4Glc) not reported in human milk oligosaccharides; (v) oligosaccharides in seminal plasma exclusively express type 2 (Galbeta1-4GlcNAc) but not the type 1 sequences (Galbeta1-3GlcNAc) that predominate in human milk glycans; and (vi) the structural diversity of seminal plasma oligosaccharides is far less than human milk oligosaccharides. The agonistic effect of both fucose and fucosylated glycoconjugates on human sperm-egg binding in vitro suggests that fucosylated oligosaccharides may also promote fertilization in the female reproductive tract.  相似文献   

11.
Recombinant human uterine tissue plasminogen activator (tPA), in part metabolically labeled with [6-3H]glucosamine or [35S]sulfate, was isolated from mouse epithelial cells (C127). Oligosaccharides present were liberated by treatment of tryptic glycopeptides with endo-beta-N-acetylglucosaminidase H or peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F and fractionated by high-performance liquid chromatography. The glycans were characterized by digestion with exoglycosidases, methylation analysis and, in part, by acetolysis and 1H-NMR spectroscopy. Glycopeptides comprising individual glycosylation sites were identified by N-terminal amino acid sequencing. The results demonstrate that recombinant tPA from C127 cells carries at Asn117 oligomannosidic glycans with 5-8 mannose residues as well as small amounts of hybrid-type species. Asn184 is only partially glycosylated and substituted by fucosylated triantennary and small amounts of diantennary N-acetyllactosaminic glycans. Likewise, Asn448 carries predominantly fucosylated triantennary species, in addition to, small amounts of diantennary and tetraantennary oligosaccharides. As a characteristic feature, part of the triantennary glycans at Asn184 and Asn448 contain additional Gal(alpha 1-3) substituents and/or sulfate groups linked to position six of beta-galactosyl residues forming NeuAc(alpha 2-3)[HO3S-6]Gal(beta 1-4) units. Oligosaccharides attached to Asn448 are almost completely substituted by (alpha 2-3)- or (alpha 2-6)-linked sialic acid residues and carry the majority of sulfate groups present. Glycans at Asn184 were found to be less sialylated and sulfated.  相似文献   

12.
Recent progress in understanding the molecular basis of autophagy has demonstrated its importance in several areas of human health. Affordable screening techniques with higher sensitivity and specificity to identify autophagy are, however, needed to move the field forward. In fact, only laborious and/or expensive methodologies such as electron microscopy, dye-staining of autophagic vesicles, and LC3-II immunoblotting or immunoassaying are available for autophagy identification. Aiming to fulfill this technical gap, we describe here the association of three widely used assays to determine cell viability – Crystal Violet staining (CVS), 3-[4, 5-dimethylthiaolyl]-2, 5-diphenyl-tetrazolium bromide (MTT) reduction, and neutral red uptake (NRU) – to predict autophagic cell death in vitro. The conceptual framework of the method is the superior uptake of NR in cells engaging in autophagy. NRU was then weighted by the average of MTT reduction and CVS allowing the calculation of autophagic arbitrary units (AAU), a numeric variable that correlated specifically with the autophagic cell death. The proposed strategy is very useful for drug discovery, allowing the investigation of potential autophagic inductor agents through a rapid screening using mammalian cell lines B16-F10, HaCaT, HeLa, MES-SA, and MES-SA/Dx5 in a unique single microplate.  相似文献   

13.
Based on the structural analysis of fumitremorgin C (FTC), imidazoline and β-carboline amino acid benzylester, 14 novel 2-substitutedtetracyclic derivatives of tetrahydrocarboline 4a–n were prepared. We demonstrated that the exposure of MES-SA/Dx5 cells to some of 4a–n resulted in significant reduction of resistance of the cells against doxorubicin. This reduced resistance was accompanied by lowering of IC50 value to doxorubicin from 1.55 ± 0.26 μmol/L to 0.33 ± 0.05 μmol/L for 2-(2-butyl)-derivative 4c, to 1.03 ± 0.22 μmol/L for 2-methyl-derivative 4d, to 0.46 ± 0.04 μmol/L for 2-benzyl-derivative 4f, to 0.98 ± 0.25 μmol/L for 2-indole-3-yl-methyl-derivative 4h, to 0.36 ± 0.03 μmol/L for 2-benzyloxycarbonylmethyl-derivative 4i, to 0.77 ± 0.08 μmol/L for 2-benzyloxycarbonylethyl-derivative 4j, and to 0.77 ± 0.08 μmol/L for 2-benzyloxycarbonylamino-n-butyl-derivative 4l. Proliferation assays of 4a–n indicated 4c,f,i,j were able to inhibit the proliferation of doxorubicin resistant MES-SA/Dx5 cells. The SAR analysis revealed that the benzylester form and the tetracyclic structure of 4a–n were critical for both sensitizing doxorubicin and the cellular anti-proliferative effect.  相似文献   

14.
Abstract: The L5 antigenic determinant was previously suggested to be a carbohydrate epitope present on murine cell recognition molecules in the developing brain and to be an early neural marker in the chick embryo. Here, we show that L5 immunoreactivity is associated with complex-type N -glycosidic oligosaccharides. To identify the carbohydrate structure recognized by the L5 antibody, we investigate its binding to N-linked oligosaccharides derived from L5 glycoproteins and to known glycans. Results of mass spectrometric analyses of L5-positive neoglycolipids prepared from L5 glycoproteins are consistent with those for N -glycans containing a 3-fucosyl N -acetyllactosamine sequence. We also investigate L5 binding to structurally defined, lipid-linked oligosaccharides based on the blood group type I and II backbones. Chromatogram binding assays, ELISA, and inhibition studies show that the antibody reacts strongly with carbohydrate chains presenting the 3-fucosyl N -acetyllactosamine sequence [Lewisx (Lex) or X-hapten] also recognized by anti-SSEA-1 and anti-CD15. Histochemical studies with different antibodies recognizing the Lex sequence show partially overlapping patterns of immunoreactivity during early neural development in the chick embryo. Therefore, we suggest that the epitope recognized by L5 antibody is closely related to those for anti-SSEA-1 and anti-CD15.  相似文献   

15.
N-linked oligosaccharides were released from human and bovine polyclonal immunoglobulin G (IgG) obtained from commercial sources and also from a monoclonal IgG(1) secreted by murine B-lymphocyte hybridoma cells (CC9C10) grown under different serum-free conditions. These conditions differed according to their steady-state dissolved oxygen concentrations. This work is based on a previous quantitative study where released glycans were characterized by fluorophore-assisted carbohydrate electrophoresis (FACE) and high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) (J. P. Kunkel, D. C. H. Jan, J. C. Jamieson, and M. Butler, 1998, J. Biotechnol. 62, 55-71). In the present article, peptide-N-glycosidase F-released glycans from different species of polyclonal IgG and murine monoclonal IgG were characterized qualitatively by high-performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS). The glycans were also analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The MALDI mass spectrometer used allowed acquisition of MS and tandem MS data, which were useful in structural investigations at a more detailed level than allowed by FACE and HPAEC-PAD. Predominant N-linked structures, as determined by all techniques, were core-fucosyl asialyl biantennary chains with varying galactosylation. Minor amounts of afucosyl, bisected, and monosialyl oligosaccharides were also detected. In contrast to FACE and HPAEC-PAD, MALDI-double quadrupole/time-of-flight MS and HPLC/ESI-MS also detected low-abundance high-mannose and hybrid structures in some of the species under investigation.  相似文献   

16.
Urinary oligosaccharides isolated from locoweed-intoxicated sheep were separated and quantified by reversed-phase high pressure liquid chromatography of the perbenzoylated alditols. Mannose-containing oligosaccharides were elevated as early as day 3 of feeding, but maximum levels (approx. 1 mumol/ml) were not attained until after 6 weeks of feeding. The relative abundance of individual oligosaccharides changed over the course of the feeding period. Man3GlcNAc2 reached a peak on day 3 and then rapidly declined. Two isomers were shown to be present in this fraction and the relative proportions altered with the duration of locoweed treatment. The major isomer present at early time points (less than 8 days) co-eluted with synthetic Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc, was digested by endo-beta-N-acetyl-glucosaminidase D, and is probably derived from the trimannosyl core of complex glycoproteins synthesized prior to locoweed treatment. Man3GlcNAc2 isolated from day 53 urine was resistant to endo-beta-N-acetylglucosaminidase D digestion but was cleaved by endo-beta-N-acetylglucosaminidase H. This isomer has the probable structure Man(alpha 1-3)Man(alpha 1-6)Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc, indicative of its origin from hybrid or high-mannose glycoproteins. Man5GlcNAc2 reached a peak on day 13 and then slowly declined, whereas Man4GlcNAc2 increased concomitantly. The rapid increase in Man5GlcNAc2 can probably be attributed to the breakdown of hybrid glycans produced as a result of swainsonine inhibition of Golgi alpha-D-mannosidase II. The onset of observable clinical signs on day 38 closely correlated with the time point at which the level of Man4GlcNAc2 exceeded Man5GlcNAc2. After locoweed feeding was discontinued, the amount of urinary oligosaccharides declined rapidly and reached baseline levels within 12 days.  相似文献   

17.
Koo JS  Choi WC  Rhee YH  Lee HJ  Lee EO  Ahn KS  Bae HS  Ahn KS  Kang JM  Choi SU  Kim MO  Lu J  Kim SH 《Life sciences》2008,83(21-22):700-708
AIMS: The resistance to chemotherapeutic drugs is a major problem for successful cancer treatment. Multidrug resistance (MDR) phenotype is characterized by over-expression of P-glycoprotein (P-gp) on the cancer cell plasma membrane that extrudes drugs out of the cells. Therefore, novel MDR reversal agents are desirable for combination therapy to reduce MDR and enhance anti-tumor activity. Thus, the present study was aimed to evaluate the potent efficacy of novel quinoline derivative KB3-1 as a potent MDR-reversing agent for combined therapy with TAX. MAIN METHODS: MDR reversing effect and TAX combined therapy were examined by Rhodamine accumulation and efflux assay and Confocal immunofluorescence microscopy, Western blotting, TUNEL assay, and cell cycle analysis. KEY FINDINGS: The discovery of quinoline-3-carboxylic acid [4-(2-[benzyl-3[-(3,4-dimethoxy-phenyl)-propionyl]-amino]-ethyl)-phenyl]-amide (KB3-1) as a novel MDR-reversal agent. KB3-1 significantly enhanced the accumulation and retention of a P-gp substrate, rhodamine-123 in the P-gp-expressing MES-SA/DX5 uterine sarcoma cells but not in the P-gp-negative MES-SA cells at non-toxic concentrations of 1 microM and 3 microM. Similarly, fluorescence microscopy observation revealed that KB3-1 reduced the effluxed rhodamine-123 expression on the membrane of MES-SA/DX5 cells. Consistent with decreased P-gp pumping activity, confocal microscopic observation revealed that KB3-1 effectively diminished the expression of P-gp in paclitaxel (TAX)-treated MES-SA/DX-5 cells. Furthermore, Western blotting confirmed that KB3-1 reduced P-gp expression and enhanced cytochrome C release and Bax expression in TAX treated MES-SA/DX-5 cells. In addition, KB3-1 enhanced TAX-induced apoptotic bodies in MES-SA/DX5 cells by TdT-mediated-dUTP nick-end labeling (TUNEL) staining assay aswell as potentiated TAX- induced cytotoxicity, G2/M phase arrest and sub-G1 apoptosis in MES-SA/DX5 cells but not in MES-SA cells. Interestingly, KB3-1 at 3 microM had comparable MDR-reversal activity to 10 microM verapamil, a well-known MDR- reversal agent. SIGNIFICANCE: KB3-1 can be a MDR-reversal drug candidate for combination chemotherapy with TAX.  相似文献   

18.
A large Mr chondroitin sulfate proteoglycan was extracted from the media of human aorta under dissociative conditions and purified by density-gradient centrifugation, ion-exchange chromatography, and gel filtration chromatography. Removal of a contaminating dermatan sulfate proteoglycan was accomplished by reduction, alkylation and rechromatography on the gel filtration column. After chondroitinase ABC treatment, the proteoglycan core was separated from a residual heparan sulfate proteoglycan by a third gel filtration chromatography step. As assessed by radioimmunoassay, the isolated proteoglycan core was free of link protein, but possessed epitopes that were recognized by antisera against the hyaluronic acid binding region of bovine cartilage proteoglycan as well as those that were weakly recognized by anti-keratan sulfate antisera. Following beta-elimination of the protein core, the liberated low Mr oligosaccharides were partially resolved by Sephadex G-50 chromatography, and their primary structure was determined by 500-MHz1H NMR spectroscopy in combination with compositional sugar analysis. The N-glycosidic carbohydrate chains, which were obtained as glycopeptides, were all biantennary glycans containing NeuAc and Fuc; microheterogeneity in the NeuAc----Gal linkage was detected in one of the branches. The N-glycosidic glycans have the following overall structure: (Formula: see text). The majority of the O-glycosidic carbohydrate chains bound to the protein core were found to be of the mucin type. They were obtained as glycopeptides and oligosaccharide alditols, and possessed the following structures: NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol, [NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol, and NeuAc alpha-(2----3) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol. The remainder of the O-glycosidic carbohydrate chains bound to the isolated proteoglycan were the hexasaccharide link regions of the chondroitin sulfate chains that remained after chondroitinase ABC treatment of the native molecule. These latter glycans, which were obtained as oligosaccharide alditols, had the following structure (with GalNAc free of sulfate or containing sulfate bound at either C-4 or C-6): delta 4,5GlcUA beta(1----3)GalNAc beta(1----4)GlcUA beta(1----3)Gal beta(1----3)Gal beta(1----4)Xyl-ol.  相似文献   

19.
A series of novel xanthenone aminoderivatives and their pyrazole-fused counterparts possessing structural analogy to the potent anticancer agent 9-methoxypyrazoloacridine (PZA) reported. These compounds exhibited an interesting cytotoxic activity against a panel of cell lines. Most noticeably, they retain activity against the multidrug resistant MES-SA/Dx5 subline, showing resistant factors close to 1.  相似文献   

20.
Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号