首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The dynamics of vegetative and reproductive growth were compared in matched pairs of Mediteranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Brachypodium distachyon (L.) Beauv. and Bromus fasciculatus C. Presl., under high and low levels of water availability in a common-environment experiment. Plants of all desert populations showed earlier switches to reproductive development and to subsequent phenophases, and the transition to flowering occurred at smaller plant sizes. Water stress had no effect (E. hispanica) or slightly accelerated the transition to flowering in B. fasciculatus (by 1–2 days) and in B. distachyon (by 4–6 days). Plant senescence was strongly enhanced by water stress, and this enhancement was greater in desert populations than in corresponding Mediterranean ones. Duration of life cycle was greatly shortened by water stress in all three species. Desert and Mediterranean populations of the three species exhibited small differences in their relative response, i.e. phenotypic plasticity, to water stress for phenological and plant size parameters. In E. hispanica and B. fasciculatus the population x water regime interaction amounted to less than 3% of total variance. By contrast, the Mediterranean population of B. distachyon was much more plastic in its response to water stress than the desert population in its transition to plant senescence. Plants from the desert populations appeared to be adapted to shorter, more compact growth cycles, culminating in earlier dates of seed maturation and plant senescence. In addition, they showed larger phenotypic plasticity in the transition to plant senescence, which trait was enhanced or magnified by sustained or repeated lack of water. By contrast, plants from Mediterranean populations delayed switchover from one phenophase to the next, seeming thus to bet on more water being forthcoming.  相似文献   

2.
Positive interactions among plants have rarely been investigated with respect to their evolutionary consequences and vice versa. The outcome of facilitative interactions depends on the competitive ability and stress tolerance of the species. We tested whether this also applies to populations of conspecifics that are locally adapted to different environments and thereby differ in these traits. We hypothesised that ecotypes from less stressful environments experience a greater effect of facilitation when grown in stressful environments compared to populations adapted to these conditions.Seeds of two ecotypes of the annual grass species, Brachypodium distachyon, were collected from Mediterranean and arid origins and transplanted at an arid environment within the species’ distribution range. To examine the effect of biotic interactions on these ecotypes, we transplanted the individuals with and without the presence of the shrub Gymnocarpos decander (underneath or away from the shrub), and with and without the presence of annual vegetation (removal experiment). We examined the effect of these interactions on the two B. distachyon ecotypes by comparison of emergence success, biomass, and survival to reproduction.The presence of shrubs had a positive effect on all three variables in both ecotypes. Facilitation by shrubs enabled individuals from Mediterranean origin to grow and reproduce in arid conditions. Unlike the locals, they failed to survive to reproduction away from the shrubs, because of the markedly shorter growing season in open areas. The annual vegetation did not affect emergence or survival to reproduction in either ecotype; however, the positive effect of shrubs on biomass was reduced in the presence annual vegetation in the Mediterranean ecotype.This demonstrates that ecotypes adapted to arid conditions respond differently to these biotic interactions compared to Mediterranean populations. We argue that facilitation may have important evolutionary consequences by enabling maladapted ecotypes to invade and colonize stressful habitats.  相似文献   

3.
M. Boaz  U. Plitmann  C. C. Heyn 《Oecologia》1994,100(3):286-292
Components of the total sexual investment of plants growing under mediterranean climatic and edaphic conditions were compared with those of plants growing in the desert, in the closely related allogamous species pair Erucaria hispanica and E. rostrata and in populations of the autogamous species Erophila minima. In all cases lower total investment was evident in the desert plants. At the prezygotic phase it was expressed by (1) reduced production of flowers; (2) lower allocation to the production of male gametophytes and some floral organs; and (3) packaging of more ovules per ovary. The ratio of reproductive: vegetative biomass which was found to be greater in the desert plants and their lower pollen: ovule ratio are perhaps indicative of greater efficiency. Their smaller investment at the postzygotic phase was expressed in: (1) reduction in total numbers of fruits and seeds; (2) decrease in seed size and weight. Yet in the desert plants the number of seeds per total biomass was found to be significantly larger and fertility rates (seed-set per ovule, fruit-set per flower per plant) were equal to or greater than those in the mediterranean plants. The trends observed in this study in desert plants, which may result in more efficient exploitation of resources, are similar in the species involved, regardless of their breeding system-autogamous or allogamous.  相似文献   

4.
Abstract

Root plasticity has been largely studied on herbaceous species of north European temperate flora and is defined as the ratio between root depth in dry soils and root depth in wet soils. In summer dry habitats such as Mediterranean environments, the soil water deficit is a common feature to which root systems of plant species should adapt to improve their ecological efficiency. The aim of this study was to compare root plasticity in annual Mediterranean species that regenerate exclusively from seeds, and herbaceous perennial Mediterranean species that use dual regeneration strategies. Root plasticity of ten herbaceous species, six perennials and four annuals, was compared in this study. The annuals species studied occur in lowland Mediterranean grasslands referred to Tuberarietea guttatae class (Dasypyrum villosum, Lophochloa pubescens, Ornithopus compressus, Rumex bucephalophorus), while the perennial species occur in montane sub-Mediterranean grasslands referred to Festuco brometea (Bromus erectus, Festuca ovina., Lotus corniculatus., Minuartia verna, Sanguisorba minor, Thymus longicaulis). The examined species were subjected to water stress according to standard methods applied in comparative ecology, i.e., half of the seedlings of each species received 20 ml de-ionized water daily for three weeks, while the other half did not. After seedling harvesting the following parameters were analysed: (i) total root length; (ii) root length in the first 10 cm of soil; (iii) shoot height; (iv) root biomass in the first 10 cm of soil; (v) shoot biomass; (vi) shoot and root plasticity. Results show that root plasticity increased significantly in dual-regenerator sub-Mediterranean mountain species.  相似文献   

5.
Wild plant populations show extensive genetic subdivision and are far from the ideal of panmixia which permeates population genetic theory. Understanding the spatial and temporal scale of population structure is therefore fundamental for empirical population genetics – and of interest in itself, as it yields insights into the history and biology of a species. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. A total of 86 accessions were sampled at local and regional scales in Italy and France, which closes a conspicuous gap in the collection for this model organism. The analysis of 196 accessions, spanning the Mediterranean from Spain to Iraq, suggests that the interplay of high selfing and seed dispersal rates has shaped genetic structure in B. distachyon. At the continental scale, the evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur on the same meadow yet do not interbreed. At the regional scale, dispersal and selfing interact and maintain high genotypic diversity, thus challenging the textbook notion that selfing in finite populations implies reduced diversity. Our study extends the population genomic resources for B. distachyon and suggests that an important use of this wild plant model is to investigate how selfing and dispersal, two processes typically studied separately, interact in colonizing plant species.  相似文献   

6.
Plants from four populations of Hordeum spontaneum originating in distinct environments of Israel were compared for stress induced phenotypic plasticity. The environments ranged along a gradient of increasing rainfall amount and predictability from low (desert) to moderate (semisteppe batha) to high (Mediterranean grassland and mountain, the latter also experiencing frost stress). The plants were exposed to a set of four treatments: no stress (optimum water and nutrients), water, nutrient and both water and nutrient stress. Plants from the four populations (or ecotypes) exhibited different patterns of plasticity in response to the different stresses (water and nutrients) and in different trait categories (reproductive, fitness and resource allocation). The importance of plasticity in response to water stress appears to decrease, and to nutrient stress appears to increase along the increasing rainfall gradient. The mountain ecotype, growing in an area with high potential productivity (amount of rainfall) but experiencing periodic frosts, was the most plastic among ecotypes in resource allocation under both water and nutrient stress, but exhibited low plasticity in other trait categories. In contrast, the desert ecotype had low plasticity in resource allocation under water stress and the lowest plasticity among the four ecotypes in all trait categories in response to nutrient stress. The ecotype originating in Mediterranean grassland, a predictable and most favourable environment, was highly plastic in fitness and allocation traits in response to low nutrient levels which is likely to occur due to competition in productive environment. We discuss the observed differences in ecotype plasticity as part of their environmentally induced adaptive ‘strategies’. We found no support for the hypothesis that plants originating in environments with greater variation and unpredictability are more plastic. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 2002, 75 , 301–312.  相似文献   

7.
The genetic diversity of seven wild populations of the grass Brachypodium distachyon (2n = 10), 4 of B. stacei (2n = 20) and 13 of B. hybridum (2n = 30) from the Mediterranean and southern areas of the Iberian Peninsula was studied via the analysis of microsatellite (SSR) and inter-microsatellite (ISSR) markers. The 11 SSR markers analysed provided a total of 156 polymorphic fragments. The B. hybridum populations returned more fragments (98) than the B. stacei populations (87), and more than twice the number recorded for the B. distachyon populations (44). Some fragments were specific to the B. distachyon (3.85 %), B. stacei (27.56 %) or B. hybridum populations (18.58 %). The analysis of 16 ISSR markers returned similar results: the B. hybridum populations returned more polymorphic fragments than the B. distachyon or B. stacei populations. The analysis of molecular variance, with distances between individuals, populations and species estimated on the basis of the presence/absence of the SSR and ISSR fragments, showed most of the variation (67 %) to occur among populations. This was followed by differences among individuals within populations (24 %), and finally among species (9 %). Grouping based on UPGMA and principal coordinate analysis showed a clear separation of three groups corresponding to the populations of the same species. Principal component analysis, involving chromosome number, low-molecular weight-glutenin subunits and the most influential climatic and geographic factors, was also performed. This revealed an obvious separation among the populations of B. distachyon and B. hybridum. The index of Mediterraneity and altitude explained 70.56 % of the total variation associated with the first axis. A trend was seen towards a greater presence of B. distachyon forms in areas of the Peninsular interior and higher altitude, with the B. hybridum forms more common in regions of greater summer rainfall and a lower index of Mediterraneity.  相似文献   

8.
Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single‐queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis.  相似文献   

9.
Summary Desert populations of the evergreen dioecious shrub Simmondsia chinensis exhibit sex-related leaf and canopy dimorphisms not present in populations from more mesic coastal environments. Leaves on female shrubs have characteristically larger sizes, greater specific weights, and greater water-holding capacity than male leaves in desert habitats. In coastal scrub environments no significant difference is present, with leaf characteristics of both sexes similar to those of desert male shrubs. Desert female shrub canopies are typically relatively open with little mutual branch shading. In male shrubs canopies are more densely branched with considerable mutual shading of branches. Female plants allocate a greater proportion of their vegetative resources to leaves than do male plants. Considering total biomass, male plants allocate 10–15% of their resources (biomass, calories, glucose-equivalents, nitrogen, phosphorus) to reproductive tissues. Female allocation is dependent on seed set. At 100% seed set females would allocate 30–40% of their resources to reproduction, while female reproductive investment would equal that of males at approximately 30% seed set. Sexual dimorphism and the associated physiological characteristics in Simmondsia act as an alternative to differential habitat selection by male and female plants. Female plants respond to limited water resources in desert areas by increasing their efficiency in allocating limited resources to reproductive structures.  相似文献   

10.
Recently, a unique case of hybridogenesis at a social level was reported in local populations of the desert ants Cataglyphis. Queens mate with males originating from a different genetic lineage than their own to produce hybrid workers, but they use parthenogenesis for the production of reproductive offspring (males and females). As a result, non-reproductive workers are all inter-lineage hybrids, whereas the sexual line is purely maternal. Here, we show that this unorthodox reproductive system occurs in all populations of the ant Cataglyphis hispanica. Remarkably, workers are hybrids of the same two genetic lineages along a 400 km transect crossing the whole distribution range of the species. These results indicate that social hybridogenesis in C. hispanica allows their maintenance over time and across a large geographical scale of two highly divergent genetic lineages, despite their constant hybridization. The widespread distribution of social hybridogenesis in C. hispanica supports that this reproductive strategy has been evolutionarily conserved over a long period.  相似文献   

11.
Differences in tolerance to water stress may underlie ecological divergence of closely related ploidy lineages. However, the mechanistic basis of physiological variation governing ecogeographical cytotype segregation is not well understood. Here, using Brachypodium distachyon and its derived allotetraploid B. hybridum as model, we test the hypothesis that, for heteroploid annuals, ecological divergence of polyploids in drier environments is based on trait differentiation enabling drought escape. We demonstrate that under water limitation allotetraploids maintain higher photosynthesis and stomatal conductance and show earlier flowering than diploids, concordant with a drought‐escape strategy to cope with water stress. Increased heterozygosity and greater genetic variability and plasticity of polyploids could confer a superior adaptive capability. Consistent with these predictions, we document (1) greater standing within‐population genetic variation in water‐use efficiency (WUE) and flowering time in allotetraploids, and (2) the existence of (nonlinear) environmental clines in physiology across allotetraploid populations. Increased gas exchange and diminished WUE occurred at the driest end of the gradient, consistent with a drought‐escape strategy. Finally, we found that allotetraploids showed weaker genetic correlations than diploids congruous with the expectation of relaxed pleiotropic constraints in polyploids. Our results suggest evolutionary divergence of ecophysiological traits in each ploidy lineage.  相似文献   

12.
Predictions of sex-allocation theory were tested by comparisons among hermaphroditic bromegrass (Bromus) species that differed in outcrossing rate. Relative maternal and paternal investment were calculated using both the ratio of pollen to seed production, and absolute allocations in units of energy, nitrogen, phosphorus, potassium, magnesium, and calcium. Outcrossing rate had a large effect on sex allocation; species having greater outcrossing rates had relatively more paternal reproductive effort. Bromus inermis was obligately outcrossing, and nearly half of its reproductive effort was devoted to pollen production. Three partially outcrossed species, B. kalmii, B. ciliatus, and B. latiglumis, invested between 5% and 11% of reproductive effort in pollen production. Paternal investment was less than 2% in the selling species B. tectorum. Estimates of sex allocation were relatively unaffected by the resource currency used in calculation. The differences among species in sex allocation were mostly due to differences in anther size and seed set.>  相似文献   

13.
The allometry of greenhouse‐grown Salsola collina Pall. in response to variation in soil nutrient content, water supply and population density has been compared. The results showed that the biomass allocation was size‐dependent. Root, stem, leaf and reproductive allocation showed a ‘true’ plasticity in response to soil nutrient variation. At low soil nutrient content, plants tended to allocate more biomass to the development of reproductive organs than to stem and leaf, but root allocation was consistent due to a tradeoff between the effects of plant size and soil nutrient content. The plasticity of stem allocation and reproductive effort was ‘true’, while the plasticity of root allocation was ‘apparent’, but there was no plasticity for leaf allocation in response to soil water variation. At lower soil water content, plants tended to allocate more biomass to the stem than to development of reproductive organs. With the exception of ‘apparent’ plasticity of root allocation, no plasticity was detected in biomass allocation when population density was varied.  相似文献   

14.
Ruppia cirrhosa growth cycle was analysed in a southern Mediterranean shallow system throughout 1 year. We examined the temporal variation in R. cirrhosa cover percentage, shoot density, biomass, leaf length, no. flowers m? 2 and no. fruits m? 2 in two groups of pond characterized by differences in some environmental parameters. Ponds were comparable for salinity and temperature but they differed for other environmental parameters such as water depth, level of suspended organic matter and chlorophyll a (CHL a). Biological parameter values were higher in B ponds, characterized by lower values of water depth, suspended organic matter and CHL a. A seasonal trend for all considered biological parameters in both typologies of ponds with maximum values in summer was also observed. Moreover, differences were observed between the two groups of ponds in relation to the reproductive strategy adopted by the plant, with populations subjected to a higher organic input and a lower water depth displaying an annual cycle. Results showed how R. cirrhosa is able to resist and to adapt to variations in environmental conditions because of the plasticity and flexibility in the growth cycle and in the reproductive effort.  相似文献   

15.
Elevated atmospheric CO2 has been shown to rapidly alter plant physiology and ecosystem productivity, but contemporary evolutionary responses to increased CO2 have yet to be demonstrated in the field. At a Mojave Desert FACE (free‐air CO2 enrichment) facility, we tested whether an annual grass weed (Bromus madritensis ssp. rubens) has evolved in response to elevated atmospheric CO2. Within 7 years, field populations exposed to elevated CO2 evolved lower rates of leaf stomatal conductance; a physiological adaptation known to conserve water in other desert or water‐limited ecosystems. Evolution of lower conductance was accompanied by reduced plasticity in upregulating conductance when CO2 was more limiting; this reduction in conductance plasticity suggests that genetic assimilation may be ongoing. Reproductive fitness costs associated with this reduction in phenotypic plasticity were demonstrated under ambient levels of CO2. Our findings suggest that contemporary evolution may facilitate this invasive species' spread in this desert ecosystem.  相似文献   

16.

Background  

Brachypodium distachyon constitutes an excellent model species for grasses. It is a small, easily propagated, temperate grass with a rapid life cycle and a small genome. It is a self-fertile plant that can be transformed with high efficiency using Agrobacteria and callus derived from immature embryos. In addition, considerable genetic and genomic resources are becoming available for this species in the form of mapping populations, large expressed sequence tag collections, T-DNA insertion lines and, in the near future, the complete genome sequence. The development of Brachypodium as a model species is of particular value in the areas of cell wall and biomass research, where differences between dicots and grasses are greatest. Here we explore the effect of mild conditions of pretreatment and hydrolysis in Brachypodium stem segments as a contribution for the establishment of sensitive screening of the saccharification properties in different genetic materials.  相似文献   

17.
The temperate annual grass Brachypodium distachyon is a diploid species with a chromosome base number of 5. It is strikingly different from other Eurasian species of the genus, which are perennial and often polyploid, with the diploids typically having base numbers of 8 or 9. Previously, phylogenies indicated that B. distachyon split from the other species early in the evolution of the genus, while its genome sequence revealed that extensive synteny on a chromosomal scale had been maintained with rice, a tropical grass with a base number of 12. Here we show evidence that B. distachyon may have a homoploid origin, involving ancestral interspecific hybridisation, although it does not appear to be a component of any of the perennial Eurasian allopolyploids. Using a cytogenetic approach, we show that dysploidy in Brachypodium has not followed a simple progression.  相似文献   

18.

Background  

The wild grass species Brachypodium distachyon (Brachypodium hereafter) is emerging as a new model system for grass crop genomics research and biofuel grass biology. A draft nuclear genome sequence is expected to be publicly available in the near future; an explosion of gene expression studies will undoubtedly follow. Therefore, stable reference genes are necessary to normalize the gene expression data.  相似文献   

19.
A phylogenetic reconstruction of eight species of the genusBrachypodium P. Beauv. (Poaceae) has been obtained combining sequence data from the chloroplastndhF gene and the nuclear ITS, and using five representatives of tribes Triticeae (Secale), Poeae (Lolium), Meliceae (Melica, Glyceria) and Oryzeae (Oryza) as out-groups. Similar numbers of informative substitutions for the ingroup species were provided by both the 3 region of the chloroplastndhF gene and the nuclear ITS region. The Mediterranean annualBrachypodium distachyon appears to be the basal lineage, followed by the divergence of the New World non-rhizomatousB. mexicanum, which antedates the separation of a core of six European and Eurosiberian rhizomatous perennials (Brachypodium arbuscula, B. retusum, B. rupestre, B. phoenicoides, B. pinnatum, andB. sylvaticum). The evolutionary reconstruction based on sequences of the chloroplast and the nuclear genomes is congruent with topologies obtained from analysis of RAPD data.  相似文献   

20.
The syntypes ofBromus madritensis var.delilei Boiss. comprise two different elements: specimens ofB. haussknechtii Boiss. and ofB. fasciculatus C. Presl s.l. By its lectotypification and on the basis of new morphological characters, the validation ofB. fasciculatus subsp.delilei (Boiss.)H. Scholz 1971 was substantiated. This subspecies represents the eastern marginal segregate of the south-Mediterranean species.B. fasciculatus var.alexandrinus Thell. is a minor variant of the typical subspecies.Dedicated to Prof.K. H. Rechinger on the occasion of his 80th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号