首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Using a radioimmunoassay (RIA) with high specificity and sensitivity (1 pg/tube) for acetylcholine (ACh), we have been able to measure the ACh content in samples from the bacteria, archaea and eucarya domains of the universal phylogenetic tree. We found detectable levels of ACh to be ubiquitous in bacteria (e.g., Bacillus subtilis), archaea (e.g., Thermococcus kodakaraensis KOD1), fungi (e.g., shiitake mushroom and yeast), plants (e.g., bamboo shoot and fern) and animals (e.g., bloodworm and lugworm). The levels varied considerably, however, with the highest ACh content detected in the top portion of bamboo shoot (2.9 micromol/g), which contained about 80 times that found in rat brain. In addition, using the method of Fonnum, various levels of ACh-synthesizing activity also were detected, a fraction of which was catalyzed by a choline acetyltransferase (ChAT)-like enzyme (sensitive to bromoACh, a selective ChAT inhibitor) in T. kodakaraensis KOD1 (15%), bamboo shoot (91%) and shiitake mushroom (51%), bloodworm (91%) and lugworm (81%). Taken together, these findings demonstrate the ubiquitous expression of ACh and ACh-synthesizing activity among life forms without nervous systems, and support the notion that ACh has been expressed and may be active as a local mediator and modulator of physiological functions since the early beginning of life.  相似文献   

2.
Evolutional study on acetylcholine expression   总被引:1,自引:0,他引:1  
Acetylcholine (ACh) is a well-known neurotransmitter in the cholinergic nervous systems of vertebrates and insects; however, there is only indirect evidence for its presence in lower invertebrates, such as plants and fungi. We therefore investigated the expression of ACh in invertebrates (sea squirt, sea urchin, trepang, squid, abalone, nereis, sea anemone, coral and sponge), plants (arabidopsis, eggplant, bamboo shoot, cedar, hinoki, pine, podcarp, fern, horsetail and moss), fungi (yeast and mushroom) and bacteria by assaying ACh content and synthesis, focusing on the presence of two synthetic enzymes, choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT). Using a specific radioimmunoassay, ACh was detected in all samples tested. The levels varied considerably, however, with the upper portion of bamboo shoots having the highest content (2.9 micromol/g). ACh synthesis was also detected in all samples tested; moreover, the activity in most samples from the animal kingdom, as well as bamboo shoots and the stem of the shiitake mushroom, were sensitive to both ChAT and CarAT inhibitors. Levels of ACh synthesis were lower in samples from other plants, fungi and bacteria and were insensitive to ChAT and CarAT inhibitors. These findings demonstrate the presence of ACh and ACh-synthesizing activity in evolutionally primitive life as well as in more complex multicellular organisms. In the context of the recent discovery of non-neuronal ACh in various mammalian species, these findings suggest that ACh been expressed in organisms from the beginning of life, functioning as a local mediator as well as a neurotransmitter.  相似文献   

3.
4.
Replication factor C (RFC) catalyzes the assembly of circular proliferating cell nuclear antigen (PCNA) clamps around primed DNA, enabling processive synthesis by DNA polymerase. The RFC-like genes, arranged in tandem in the Thermococcus kodakaraensis KOD1 genome, were cloned individually and co-expressed in Escherichia coli cells. T. kodakaraensis KOD1 RFC homologue (Tk-RFC) consists of the small subunit (Tk-RFCS: MW=37.2 kDa) and the large subunit (Tk-RFCL: MW=57.2 kDa). The DNA elongation rate of the family B DNA polymerase from T. kodakaraensis KOD1 (KOD DNA polymerase), which has the highest elongation rate in all thermostable DNA polymerases, was increased about 1.7 times, when T. kodakaraensis KOD1 PCNA (Tk-PCNA) and the Tk-RFC at the equal molar ratio of KOD DNA polymerase were reacted with primed DNA.  相似文献   

5.
Two intein endonucleases, denoted PI- Pko I and PI- Pko II, in the DNA polymerase gene of the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 were expressed in Escherichia coli and the recombinant endonucleases were characterized. Both endonucleases were thermostable and cleaved their intein-less DNA sequences leaving four base 3'-hydroxyl overhangs. PI-Pko I exhibited 22 times higher specific activity than PI-Pko II and the activity of PI-Pko II was enhanced at higher potassium ion concentrations (1 M). Recognition sequences were also determined using synthetic oligonucleotides inserted into plasmid pUC19. It was shown that DNA sequences of 19 and 16 bp are needed for cleavage by PI-Pko I and PI-Pko II, respectively. PI-Pko II could cleave the downstream junction region between intein-encoding and mature DNA polymerase regions and cleavage by PI-Pko II could be detected even when chromosomal DNA of P.kodakaraensis KOD1 was used as substrate. Therefore, it is suggested that these endonucleases are switching endonucleases whose function lies in the rearrangement of chromosomal DNA.  相似文献   

6.
We previously clarified that the chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 produces diacetylchitobiose (GlcNAc(2)) as an end product from chitin. Here we sought to identify enzymes in T. kodakaraensis that were involved in the further degradation of GlcNAc(2). Through a search of the T. kodakaraensis genome, one candidate gene identified as a putative beta-glycosyl hydrolase was found in the near vicinity of the chitinase gene. The primary structure of the candidate protein was homologous to the beta-galactosidases in family 35 of glycosyl hydrolases at the N-terminal region, whereas the central region was homologous to beta-galactosidases in family 42. The purified protein from recombinant Escherichia coli clearly showed an exo-beta-D-glucosaminidase (GlcNase) activity but not beta-galactosidase activity. This GlcNase (GlmA(Tk)), a homodimer of 90-kDa subunits, exhibited highest activity toward reduced chitobiose at pH 6.0 and 80 degrees C and specifically cleaved the nonreducing terminal glycosidic bond of chitooligosaccharides. The GlcNase activity was also detected in T. kodakaraensis cells, and the expression of GlmA(Tk) was induced by GlcNAc(2) and chitin, strongly suggesting that GlmA(Tk) is involved in chitin catabolism in T. kodakaraensis. These results suggest that T. kodakaraensis, unlike other organisms, possesses a novel chitinolytic pathway where GlcNAc(2) from chitin is first deacetylated and successively hydrolyzed to glucosamine. This is the first report that reveals the primary structure of GlcNase not only from an archaeon but also from any organism.  相似文献   

7.
8.
9.
Numerous bacteria and mammalian cells harbor two enzymes, phosphopentomutase (PPM) and 2-deoxyribose 5-phosphate aldolase (DERA), involved in the interconversion between nucleosides and central carbon metabolism. In this study, we have examined the presence of this metabolic link in the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. A search of the genome sequence of this strain revealed the presence of a closely related orthologue (TK2104) of bacterial DERA genes while no orthologue related to previously characterized PPM genes could be detected. Expression, purification, and characterization of the TK2104 protein product revealed that this gene actually encoded a DERA, catalyzing the reaction through a class I aldolase mechanism. As PPM activity was detected in T. kodakaraensis cells, we partially purified the protein to examine its N-terminal amino acid sequence. The sequence corresponded to a gene (TK1777) similar to phosphomannomutases within COG1109 but not COG1015, which includes all previously identified PPMs. Heterologous gene expression of TK1777 and characterization of the purified recombinant protein clearly revealed that the gene indeed encoded a PPM. Both enzyme activities could be observed in T. kodakaraensis cells under glycolytic and gluconeogenic growth conditions, whereas the addition of ribose, 2-deoxyribose, and 2'-deoxynucleosides in the medium did not lead to a significant induction of these activities. Our results clearly indicate the presence of a metabolic link between pentoses and central carbon metabolism in T. kodakaraensis, providing an alternative route for pentose biosynthesis through the functions of DERA and a structurally novel PPM.  相似文献   

10.
A hyperthermophilic archaeal strain, KOD1, isolated from a solfatara on Kodakara Island, Japan, has previously been reported as Pyrococcus sp. KOD1. However, a detailed phylogenetic tree, made possible by the recent accumulation of 16S rRNA sequences of various species in the order Thermococcales, indicated that strain KOD1 is a member of the genus Thermococcus. We performed DNA-DNA hybridization tests against species that displayed high similarity in terms of 16S ribosomal DNA sequences, including Thermococcus peptonophilus and Thermococcus stetteri. Hybridization results and differences in growth characteristics and substrate utilization differentiated strain KOD1 from T. peptonophilus and T. stetteri at the species level. Our results indicate that strain KOD1 represents a new species of Thermococcus, which we designate as Thermococcus kodakaraensis KOD1 sp. nov.  相似文献   

11.
The gene encoding the proliferating cell nuclear antigen (PCNA), a sliding clamp of DNA polymerases, was cloned from an euryarchaeote, Thermococcus kodakaraensis KOD1. The PCNA homologue, designated Tk-PCNA, contained 249 amino acid residues with a calculated molecular mass of 28,200 Da and was 84.3% identical to that from Pyrococcus furiosus. Tk-PCNA was overexpressed in Escherichia coli and purified. This protein stimulated the primer extension abilities of the DNA polymerase from T. kodakaraensis KOD1 'KOD DNA polymerase'. The stimulatory effect of Tk-PCNA was observed when a circular DNA template was used and was equally effective on both circular and linear DNA. The Tk-PCNA improved the sensitivity of PCR without adverse effects on fidelity with the KOD DNA polymerase. This is the first report in which a replication-related factor worked on PCR.  相似文献   

12.
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 is a member of the subtilisin family. T. kodakaraensis subtilisin in a proform (T. kodakaraensis pro-subtilisin), as well as its propeptide (T. kodakaraensis propeptide) and mature domain (T. kodakaraensis mat-subtilisin), were independently overproduced in E. coli, purified, and biochemically characterized. T. kodakaraensis pro-subtilisin was inactive in the absence of Ca2+ but was activated upon autoprocessing and degradation of propeptide in the presence of Ca2+ at 80 degrees C. This maturation process was completed within 30 min at 80 degrees C but was bound at an intermediate stage, in which the propeptide is autoprocessed from the mature domain (T. kodakaraensis mat-subtilisin*) but forms an inactive complex with T. kodakaraensis mat-subtilisin*, at lower temperatures. At 80 degrees C, approximately 30% of T. kodakaraensis pro-subtilisin was autoprocessed into T. kodakaraensis propeptide and T. kodakaraensis mat-subtilisin*, and the other 70% was completely degraded to small fragments. Likewise, T. kodakaraensis mat-subtilisin was inactive in the absence of Ca2+ but was activated upon incubation with Ca2+ at 80 degrees C. The kinetic parameters and stability of the resultant activated protein were nearly identical to those of T. kodakaraensis mat-subtilisin*, indicating that T. kodakaraensis mat-subtilisin does not require T. kodakaraensis propeptide for folding. However, only approximately 5% of T. kodakaraensis mat-subtilisin was converted to an active form, and the other part was completely degraded to small fragments. T. kodakaraensis propeptide was shown to be a potent inhibitor of T. kodakaraensis mat-subtilisin* and noncompetitively inhibited its activity with a Ki of 25 +/- 3.0 nM at 20 degrees C. T. kodakaraensis propeptide may be required to prevent the degradation of the T. kodakaraensis mat-subtilisin molecules that are activated later by those that are activated earlier.  相似文献   

13.
14.
15.
Osmotically inducible protein C (OsmC) is involved in the cellular defense mechanism against oxidative stress caused by exposure to hyperoxides or elevated osmolarity. OsmC was identified by two-dimensional electrophoresis (2DE) analysis as a protein that is overexpressed in response to osmotic stress, but not under heat and oxidative stress. Here, an OsmC gene from T. kodakaraensis KOD1 was cloned and expressed in Escherichia coli. TkOsmC showed a homotetrameric structure based on gel filtration and electron microscopic analyses. TkOsmC has a significant peroxidase activity toward both organic and inorganic peroxides in high, but not in low temperature.  相似文献   

16.
We have identified an NiFe-hydrogenase exclusively localized in the cytoplasm of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (T. kodakaraensis hydrogenase). A gene cluster encoding T. kodakaraensis hydrogenase was composed of four open reading frames (hyhBGSL(Tk)), where the hyhS(Tk) and hyhL(Tk) gene products corresponded to the small and the large subunits of NiFe-hydrogenase, respectively. A putative open reading frame for hydrogenase-specific maturation endopeptidase (hybD(Tk)) was found downstream of the cluster. Polyclonal antibodies raised against recombinant HyhL(Tk) were used for immunoaffinity purification of T. kodakaraensis hydrogenase, leading to a 259-fold concentration of hydrogenase activity. The purified T. kodakaraensis hydrogenase was composed of four subunits (beta, gamma, delta, and alpha), corresponding to the products of hyhBGSL(Tk), respectively. Each alphabetagammadelta unit contained 0.8 mol of Ni, 22.3 mol of Fe, 21.1 mol of acid-labile sulfide, and 1.01 mol of flavin adenine dinucleotide. The optimal temperature for the T. kodakaraensis hydrogenase was 95 degrees C for H(2) uptake and 90 degrees C for H(2) production with methyl viologen as the electron carrier. We found that NADP(+) and NADPH promoted high levels of uptake and evolution of H(2), respectively, suggesting that the molecule is the electron carrier for the T. kodakaraensis hydrogenase.  相似文献   

17.
A novel mechanism for controlling the proofreading and polymerase activities of archaeal DNA polymerases was studied. The 3'-5'exonuclease (proofreading) activity and PCR performance of the family B DNA polymerase from Thermococcus kodakaraensis KOD1 (previously Pyrococcus kodakaraensis KOD1) were altered efficiently by mutation of a "unique loop" in the exonuclease domain. Interestingly, eight different H147 mutants showed considerable variations in respect to their 3'-5'exonuclease activity, from 9% to 276%, as against that of the wild-type (WT) enzyme. We determined the 2.75A crystal structure of the H147E mutant of KOD DNA polymerase that shows 30% of the 3'-5'exonuclease activity, excellent PCR performance and WT-like fidelity. The structural data indicate that the properties of the H147E mutant were altered by a conformational change of the Editing-cleft caused by an interaction between the unique loop and the Thumb domain. Our data suggest that electrostatic and hydrophobic interactions between the unique loop of the exonuclease domain and the tip of the Thumb domain are essential for determining the properties of these DNA polymerases.  相似文献   

18.
Archaea, which regroup organisms with extreme living conditions, possess many predicted iron-containing proteins that may be metabolically critical; however, their need for iron remains poorly documented. In this report, iron acquisition mechanisms were investigated in the hyperthermophilic archaeon Thermococcus kodakaraensis . Thermococcus kodakaraensis requires iron for its growth and possesses many putative iron uptake systems, including several ATP-binding cassette-like transporters and two FeoAB-like receptors, showing that this organism shares similar features with bacteria. One homolog of the major bacterial iron regulator, ferric uptake regulator (Fur), with about 50% similarity to Escherichia coli Fur was also identified. Thermococcus kodakaraensis Fur was found to be able to specifically bind to a Fur-binding site consensus-like sequence of its own gene promoter. However, its expression has been hindered by a −1 frameshift mutation and the chromosomal repair of this mutation did not affect T. kodakaraensis in vivo phenotypes. Microarrays analyses helped to further characterize T. kodakaraensis iron-dependent growth and revealed no role for the Fur homolog in the global regulatory response of the cells to iron. In contrast, additional evidences indicated that the T. kodakaraensis diphtheria toxin regulator (DtxR) homolog may control the expression of the major iron acquisition effectors, while its inactivation enabled higher resistance to iron deficiency.  相似文献   

19.
We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号