首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Remodelling the contractile apparatus within smooth muscle cells allows effective contractile activity over a wide range of cell lengths. Thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. Using negative stain electron microscopy of individual folded myosin molecules from turkey gizzard smooth muscle, we show that they are more compact than previously described, with heads and the three segments of the folded tail closely packed. Heavy meromyosin (HMM), which lacks two-thirds of the tail, closely resembles the equivalent parts of whole myosin. Image processing reveals a characteristic head region morphology for both HMM and myosin, with features identifiable by comparison with less compact molecules. The two heads associate asymmetrically: the tip of one motor domain touches the base of the other, resembling the blocked and free heads of this HMM when it forms 2D crystals on lipid monolayers. The tail of HMM lies between the heads, contacting the blocked motor domain, unlike in the 2D crystal. The tail of whole myosin is bent sharply and consistently close to residues 1175 and 1535. The first bend position correlates with a skip in the coiled coil sequence, the second does not. Tail segments 2 and 3 associate only with the blocked head, such that the second bend is near the C-lobe of the blocked head regulatory light chain. Quantitative analysis of tail flexibility shows that the single coiled coil of HMM has an apparent Young's modulus of about 0.5 GPa. The folded tail of the whole myosin is less flexible, indicating interactions between the segments. The folded tail does not modify the compact head arrangement but stabilises it, indicating a structural mechanism for the very low ATPase activity of the folded molecule.  相似文献   

3.
Hysteresis of contracted airway smooth muscle   总被引:7,自引:0,他引:7  
  相似文献   

4.
5.
Trinitrophenylation of smooth muscle myosin   总被引:1,自引:0,他引:1  
The reaction of trinitrobenzenesulfonate with gizzard myosin was studied. The initial phase of the reaction involved two residues and at this level of modification the following was observed: the Mg2+-ATPase of myosin, the actin-activated ATPase of phosphorylated myosin and the phosphorylation kinetics of myosin were not affected. However, trinitrophenylation did induce an activation of the actin-activated ATPase of dephosphorylated myosin and in this respect mimicked the effect of light chain phosphorylation. The Mg2+-dependence of actin-activated ATPase also is altered on trinitrophenylation. These alterations of enzymatic properties could be at least partly explained by the finding that trinitrophenylation favored the 6S conformation of myosin.  相似文献   

6.
Several techniques were used to investigate the possibility that smooth muscle tropomyosin interacts with smooth muscle myosin. These experiments were carried out in the absence of actin. The Mg2+-ATPase activity of myosin was activated by tropomyosin. This was most marked at low ionic strength but also occurred at higher ionic strength with monomeric myosin. For myosin and HMM, the activation of Mg2+-ATPase by tropomyosin was greater at low levels of phosphorylation. There was no detectable effect of tropomyosin on the Mg2+-ATPase activity of S1. The KCl dependence of myosin viscosity was influenced by tropomyosin, and in the presence of tropomyosin, the 6S to 10S transition occurred at lower KCl concentrations. From the viscosity change, an approximate stoichiometry of 1:1 tropomyosin to myosin was estimated. The phosphorylation dependence of viscosity, which reflects the 10S-6S transition, also was altered in the presence of tropomyosin. An interaction between myosin and tropomyosin was detected by fluorescence measurements using tropomyosin labeled with dansyl chloride. These results indicate that an interaction occurs between myosin and tropomyosin. In general, the interaction is favored at low ionic strength and at low levels of phosphorylation. This interaction is not expected to be competitive with the formation of the actin-tropomyosin complex, but the possibility is raised that a direct interaction between myosin and tropomyosin bound to the thin filament could modify contractile properties in smooth muscle.  相似文献   

7.
R A Cross  K E Cross    A Sobieszek 《The EMBO journal》1986,5(10):2637-2641
In vitro and at physiological ionic strength, unphosphorylated smooth muscle myosin filaments dissolve on addition of ATP, forming folded (10S) myosin monomers. By following the fate of ATP and the time course of filament disassembly we have established details of the mechanism of this process. Myosin filaments first bind and hydrolyse 2.0 mol/mol of ATP before significant filament dissolution occurs. Following dissolution, the hydrolysis products ADP.Pi are retained on the heads of the folded myosin monomers, and are released so slowly (half time approximately 100 min at 100 mM KCl) as to be effectively trapped. The straight (6S) conformation of myosin, stable at greater than 225 mM KCl, did not exhibit this product trapping, and neither did myosin filaments held under conditions which disfavour ATP-induced disassembly. The implications of these results for filament stability in vivo are discussed in terms of a simple, testable model for smooth muscle myosin self-assembly.  相似文献   

8.
Unphosphorylated smooth muscle myosin filaments do not disassemble in MgATP, provided that the solution is supplemented either by 25% serum albumin or by 6% polyethylene glycol 6000. These filaments are able to support actomyosin retraction but their ATPase activity is not activated by tropomyosin-decorated F-actin.  相似文献   

9.
The purpose of this study is to investigate the dependence of the rate of myocardial ischemic destruction on the status of cardiomyocyte contractile apparatus. It has been shown that in relaxed cardiomyocytes the destructive processes proceed with a greater rate than in contractile ones.  相似文献   

10.
Mechanism of smooth muscle myosin phosphorylation   总被引:8,自引:0,他引:8  
In vertebrate smooth muscles, phosphorylation of the regulatory light chain appears to be necessary for actin activation of the Mg-ATPase activity and for the in vitro assembly of myosin into filaments. From a correlation between the degree of phosphorylation and enzymatic activity, it was suggested that both myosin heads must be phosphorylated before either head could be activated by actin, and that phosphorylation of filamentous myosin occurred in a negatively cooperative manner (Persechini, A., and Hartshorne, D. J. (1981) Science 213, 1383-1385; Ikebe, M., Ogihara, S., and Tonomura, Y. (1982) J. Biochem. (Tokyo) 91, 1809-1812; Sellers, J. R., Chock, P. B., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14181-14188). Here we have determined the mechanism of phosphorylation by separating dephosphorylated and phosphorylated myosin species based on their different structural properties in the minifilament buffer system (5 mM citrate, 22 mM Tris). Fully phosphorylated myosin remained assembled as minifilaments in 1 mM Mg-ATP, but dephosphorylated myosin dissociated to a mixture of folded monomers and dimers. Gel filtration was used to separate these two structures. At intermediate levels of phosphorylation, the relative amount of myosin that formed minifilament and dimer and the degree of phosphorylation of the separated species relative to the initial level of phosphorylation was measured. From these data, it was possible to deduce that singly and doubly phosphorylated myosin remained assembled in the presence of nucleotide. Myosin molecules with 0, 1, or 2 heads phosphorylated could also be separated by nondenaturing gel electrophoresis. The amount of myosin which formed each species was quantitated as a function of phosphorylation. Results from the combined approaches are consistent with a model in which light chain kinase randomly phosphorylates myosin, independent of the state of aggregation of the myosin.  相似文献   

11.
Regulation of smooth muscle myosin.   总被引:9,自引:0,他引:9  
It is well established that light chain phosphorylation is required before a smooth muscle can generate force. The apparent modulation of shortening velocity by phosphorylation during sustained contractions may be accounted for by a mechanical interaction between rapidly cycling phosphorylated crossbridges and slowly or non-cycling dephosphorylated crossbridges. Latchbridges, force-producing dephosphorylated crossbridges, have been proposed to explain why force levels remain high at low levels of phosphorylation. The role of the thin-filament-associated proteins caldesmon and calponin in regulation remains enigmatic, but their inhibitory properties in solution would be consistent with a possible involvement in maintenance of a relaxed state.  相似文献   

12.
R A Cross 《FEBS letters》1984,176(1):197-201
Electron microscopy of mammalian smooth muscle myosin rods showed them to be 153 +/- 7 nm (SD) long, and to bend sharply (greater than 90 degrees) but infrequently, and pH independently (range 6.5-9.5), at a single site 45 +/- 4 nm from one end of the molecule. Light meromyosin (LMM) preparations were 99 +/- 10 nm long, and showed no bends. Intrinsic viscosity vs temperature plots for rods and LMM indicated that neither fragment changed in flexibility in the range 4-40 degrees C. Peptide mapping in the presence and absence of SDS established that the proteolytic susceptibility of the hinge at the N terminus of LMM reflects the presence of locally different structure, and not simply a clustering of susceptible residues. The isolated smooth muscle myosin rod thus contains only a single hinge, having significant stiffness, and lacks the second bend seen under certain conditions in the intact molecule.  相似文献   

13.
14.
Summary Three myosin isoforms, two of smooth muscle and one of cytoplasmic origin, were found in porcine brain by Western blotting analysis with antibodies specific for smooth and cytoplasmic myosins. The smooth muscle isoforms comprise at least 30% of the total myosin present. Brain tissue is therefore not a suitable source for the isolation of pure cytoplasmic contractile proteins.Abbreviations DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - FITC fluorescein isothiocyanate - PBS phosphate buffered saline - SDS PAGE polyacrylamide electrophoresis in the presence of sodium dodecylsulphate - TRIS tris(hydroxymethyl)aminomethane  相似文献   

15.
16.
We explored the hypothesis that discrepancies in the literature concerning the nature of myosin expression in cultured smooth muscle cells are due to the appearance of a new form of myosin heavy chain (MHC) in vitro. Previously, we used a very porous sodium dodecyl sulfate gel electrophoresis system to detect two MHCs in intact smooth muscles (SM1 and SM2) which differ by less than 2% in molecular weight (Rovner, A. S., Thompson, M. M., and Murphy, R. A. (1986) Am. J. Physiol. 250, C861-C870). Myosin-containing homogenates of rat aorta cells in primary culture were electrophoresed on this gel system, and Western blots were performed using smooth muscle-specific and nonmuscle-specific myosin antibodies. Subconfluent, rapidly proliferating cultures contained a form of heavy chain not found in rat aorta cells in vivo (NM) with electrophoretic mobility and antigenicity identical to the single unique heavy chain seen in nonmuscle cells. Moreover, these cultures expressed almost none of the smooth muscle heavy chains. In contrast, postconfluent growth-arrested cultures expressed increased levels of the two smooth muscle heavy chains, along with large amounts of NM. Analysis of cultures pulsed with [35S] methionine indicated that subconfluent cells were synthesizing almost exclusively NM, whereas postconfluent cells synthesized SM1 and SM2 as well as larger amounts of NM. Similar patterns of MHC content and synthesis were found in subconfluent and postconfluent passaged cells. These results show that cultured vascular smooth muscle cells undergo differential expression of smooth muscle- and nonmuscle-specific MHC forms with changes in their growth state, which appear to parallel changes in expression of the smooth muscle and nonmuscle forms of actin (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352). The reappearance of the smooth muscle MHCs in postconfluent cells suggests that density-related growth arrest promotes cytodifferentiation, but the continued expression of the nonmuscle MHC form in these smooth muscle cells indicates that other factors are required to induce the fully differentiated state while in culture.  相似文献   

17.
Regulation of cytoplasmic and smooth muscle myosin.   总被引:21,自引:0,他引:21  
  相似文献   

18.
Further characterization and thiophosphorylation of smooth muscle myosin   总被引:2,自引:0,他引:2  
(i) Myosin from chicken gizzards was purified by a modification of an earlier procedure (M. N. Malik, 1978,Biochemistry17, 27–32). When this myosin, as well as that prepared by the method of A. Sobieszek and R. D. Bremel (1975,Eur. J. Biochem.55, 49–60), was analyzed by gradient slab gel using the discontinuous buffer system of Neville (1971,J. Biol. Chem.246, 6328–6334), a closely spaced doublet in the heavy chain and four light chains were observed as opposed to one heavy chain and two light chains with the method of Weber and Osborn (1969, J. Biol. Chem.244, 4406–4412). These findings raise the possibility of the existence of myosin isoenzymes in smooth muscle. (ii) The purified gizzard myosin was found to be free of kinase and phosphatase. Phosphorylation or thiophosphorylation of myosin was observed only by exogenously adding kinase. A maximum of 1.2 mol of 32P/mol of myosin and 2.3 mol of 35S/mol of myosin were obtained. The actin-activated ATPase activity depended upon the extent of thiophosphorylation of myosin; a four- to fivefold increase in the activity was observed when myosin was fully thiophosphorylated. Thiophosphorylated myosin was found to be more stable than phosphorylated myosin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号