首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

2.
Fission yeast Cds1 is phosphorylated and activated when DNA replication is interrupted by nucleotide starvation or DNA damage. Cds1 enforces the S-M checkpoint that couples mitosis (M) to the completion of DNA synthesis (S). Cds1 also controls replicational stress tolerance mechanisms. Cds1 is regulated by a group of proteins that includes Rad3, a kinase related to human checkpoint kinase ATM (ataxia telangiectasia mutated). ATM phosphorylates serine or threonine followed by glutamine (SQ or TQ). Here we show that in vitro, Rad3 and ATM phosphorylate the N-terminal domain of Cds1 at the motif T(11)Q(12). Substitution of threonine-11 with alanine (T11A) abolished Cds1 activation that occurs when DNA replication is inhibited by hydroxyurea (HU) treatment. The cds1-T11A mutant was profoundly sensitive to HU, although not quite as sensitive as a cds1(-) null mutant. Cds1(T11A) was unable to enforce the S-M checkpoint. These results strongly suggest that Rad3-dependent phosphorylation of Cds1 at threonine-11 is required for Cds1 activation and function.  相似文献   

3.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

4.
The Cdc14p-like phosphatase Flp1p (also known as Clp1p) is regulated by cell cycle-dependent changes in its subcellular localization. Flp1p is restricted to the nucleolus and spindle pole body until prophase, when it is dispersed throughout the nucleus, mitotic spindle, and medial ring. Once released, Flp1p antagonizes Cdc2p/cyclin activity by reverting Cdc2p-phosphorylation sites on Cdc25p. On replication stress, ataxia-telangiectasia mutated/ATM/Rad3-related kinase Rad3p activates Cds1p, which phosphorylates key proteins ensuring the stability of stalled DNA replication forks. Here, we show that replication stress induces changes in the subcellular localization of Flp1p in a checkpoint-dependent manner. Active Cds1p checkpoint kinase is required to release Flp1p into the nucleus. Consistently, a Flp1p mutant (flp1-9A) lacking all potential Cds1p phosphorylation sites fails to relocate in response to replication blocks and, similarly to cells lacking flp1 (Deltaflp1), presents defects in checkpoint response to replication stress. Deltaflp1 cells accumulate reduced levels of a less active Cds1p kinase in hydroxyurea (HU), indicating that nuclear Flp1p regulates Cds1p full activation. Consistently, Deltaflp1 and flp1-9A have an increased percentage of Rad22p-recombination foci during HU treatment. Together, our data show that by releasing Flp1p into the nucleus Cds1p checkpoint kinase modulates its own full activation during replication stress.  相似文献   

5.
Fission yeast Mrc1 (mediator of replication checkpoint 1) is an adaptor checkpoint protein required for Rad3-dependent activation of the checkpoint kinase Cds1 in response to arrest of replication forks. Here we report studies on the regulation of Mrc1 by phosphorylation. Replication arrest induced by hydroxyurea (HU) induces Mrc1 phosphorylation that is detected by a change in Mrc1 electrophoretic mobility. Phosphorylation is maintained in cds1Delta, rad3Delta, and tel1Delta single mutants but eliminated in a rad3Delta tel1Delta double mutant. Mrc1 has two clusters of S/TQ motifs that are potential Rad3/Tel1 phosphorylation sites. Mutation of six S/TQ motifs in these two clusters strongly impairs Mrc1 phosphorylation. Two motifs located at S604 and T645 are vital for HU resistance. The T645A mutation strongly impairs a Cds1-Mrc1 yeast two-hybrid interaction that is dependent on a functional forkhead-associated (FHA) domain in Cds1, indicating that phosphorylation of T645 mediates Mrc1's association with Cds1. Consistent with this model, the T645 region of Mrc1 effectively substitutes for the T11 region of Cds1 that is thought to be phosphorylated by Rad3 and to mediate FHA-dependent oligomerization of Cds1. The S/TQ cluster that includes S604 is needed for Mrc1's increased association with chromatin in replication-arrested cells. These data indicate that Rad3 and Tel1 regulate Mrc1 through differential phosphorylation to control Cds1.  相似文献   

6.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

7.
Time of replication of ARS elements along yeast chromosome III.   总被引:33,自引:16,他引:17       下载免费PDF全文
The replication of putative replication origins (ARS elements) was examined for 200 kilobases of chromosome III of Saccharomyces cerevisiae. By using synchronous cultures and transfers from dense to light isotope medium, the temporal pattern of mitotic DNA replication of eight fragments that contain ARSs was determined. ARS elements near the telomeres replicated late in S phase, while internal ARS elements replicated in the first half of S phase. The results suggest that some ARS elements in the chromosome may be inactive as replication origins. The actively expressed mating type locus, MAT, replicated early in S phase, while the silent cassettes, HML and HMR, replicated late. Unexpectedly, chromosome III sequences were found to replicate late in G1 at the arrest induced by the temperature-sensitive cdc7 allele.  相似文献   

8.
In fission yeast, the replication checkpoint is enforced by the kinase Cds1 (human Chk2), which regulates both cell cycle progression and DNA repair factors to ensure that the genome is faithfully duplicated prior to mitosis. Cds1 contains a forkhead-associated domain that mediates its interaction with phosphorylated residues in target proteins. One target of Cds1 is the essential nuclear protein Rad60, which contains the unique structural feature of tandem SUMO homology domains at its C terminus. Hypomorphic mutants of Rad60 cause profound defects in DNA repair and replication stress tolerance. To explore the physiological significance of the Cds1-Rad60 interaction, we have examined the phosphorylation of Rad60 by Cds1 in vitro and the in vivo phosphorylation of Rad60 in response to replication blocks. We find that the N terminus but not the SUMO-like domain of Rad60 is phosphorylated in both conditions. Three important Rad60 phosphorylation sites were identified: Thr(72), Ser(32), and Ser(34). Rad60 Thr(72) mediates the Cds1-Rad60 interaction and is required for the Cds1-dependent phosphorylation of Rad60 in response to replication arrest. Phosphorylation of Rad60 Ser(32) and Ser(34) in a putative SUMO-binding motif is critical for the survival of replication stress. In addition, mutation of Rad60 Ser(32) and Ser(34) to alanine is lethal in cells deleted for the RecQ DNA helicase Rqh1. Finally, we find that Rad60 self-associates via its C-terminal SUMO-like domain and putative SUMO-binding motifs.  相似文献   

9.
Genome integrity is protected by Cds1 (Chk2), a checkpoint kinase that stabilizes arrested replication forks. How Cds1 accomplishes this task is unknown. We report that Cds1 interacts with Rad60, a protein required for recombinational repair in fission yeast. Cds1 activation triggers Rad60 phosphorylation and nuclear delocalization. A Rad60 mutant that inhibits regulation by Cds1 renders cells specifically sensitive to replication fork arrest. Genetic and biochemical studies indicate that Rad60 functions codependently with Smc5 and Smc6, subunits of an SMC (structural maintenance of chromosomes) complex required for recombinational repair. These studies indicate that regulation of Rad60 is an important part of the replication checkpoint response controlled by Cds1. We propose that control of Rad60 regulates recombination events at stalled forks.  相似文献   

10.
A position effect on the time of replication origin activation in yeast.   总被引:40,自引:0,他引:40  
B M Ferguson  W L Fangman 《Cell》1992,68(2):333-339
The chromosomes of eukaryotes are characterized by the mosaic nature of their replication--large regions of DNA that replicate early in S phase are interspersed with regions that replicate late. This pattern of early and late synthesis appears to be the consequence of a temporal program that activates replication origins at different times. The basis of this temporal regulation in the yeast S. cerevisiae has been investigated by changing the chromosomal locations of two origins, one activated early in the S phase (ARS1) and one activated late (ARS501). We show that the cis-acting information controlling time of activation can be separated from the element that determines origin function. For the ARS501 origin, late activation appears to be a consequence of its proximity to the telomere.  相似文献   

11.
The relationship between the DNA replication and spindle checkpoints of the cell cycle is unclear, given that in most eukaryotes, spindle formation occurs only after DNA replication is complete. Fission yeast rad3 mutant cells, which are deficient in DNA replication checkpoint function, enter, progress through, and exit mitosis even when DNA replication is blocked. In contrast, the entry of cds1 mutant cells into mitosis is delayed by several hours when DNA replication is inhibited. We show here that this delay in mitotic entry in cds1 cells is due in part to activation of the spindle checkpoint protein Mad2p. In the presence of the DNA replication inhibitor hydroxyurea (HU), cds1 mad2 cells entered and progressed through mitosis earlier than did cds1 cells. Overexpression of Mad2p or inactivation of Slp1p, a regulator of the anaphase-promoting complex, also rescued the checkpoint defect of HU-treated rad3 cells. Rad3p was shown to be involved in the physical interaction between Mad2p and Slp1p in the presence of HU. These results suggested that Mad2p and Slp1p act downstream of Rad3p in the DNA replication checkpoint and that Mad2p is required for the DNA replication checkpoint when Cds1p is compromised.  相似文献   

12.
ARS replication during the yeast S phase   总被引:43,自引:0,他引:43  
A 1.45 kb circular plasmid derived from yeast chromosome IV contains the autonomous replication element called ARS1. Isotope density transfer experiments show that each plasmid molecule replicates once each S phase, with initiation depending on two genetically defined steps required for nuclear DNA replication. A density transfer experiment with synchronized cells demonstrates that the ARS1 plasmid population replicates early in the S phase. The sequences adjacent to ARS1 on chromosome IV also initiate replication early, suggesting that the ARS1 plasmid contains information which determines its time of replication. The times of replication for two other yeast chromosome sequences, ARS2 and a sequence referred to as 1OZ, indicate that the temporal order of replication is ARS1 leads to ARS2 leads to 1OZ. These experiments show directly that specific chromosome regions replicate at specific times during the yeast S phase. If ARS elements are origins of chromosome replication, then the experiment reveals times of activation for two origins.  相似文献   

13.
14.
Protein phosphorylation is the hallmark of checkpoint activation. Hundreds of targets of checkpoint kinases have been identified recently by genome-wide investigations. However, the complete picture of a phosphorylation network required for activation of a checkpoint pathway has not been available. The DNA replication checkpoint in Schizosaccharomyces pombe contains two major protein kinases, the sensor kinase Rad3 and the effector kinase Cds1, with the latter mediating most of the checkpoint functions. We show here that when DNA replication is arrested, efficient activation of Cds1 requires five phosphorylations that cooperate in a parallel or a sequential manner. Phosphorylation of a threonine residue (Thr(11)) in Cds1 by Rad3 occurs at a basal level in the absence of three other parallel Rad3-dependent phosphorylations on the mediator Mrc1 and Rad9 in the checkpoint clamp complex. However, the three parallel Rad3-dependent phosphorylations are all required for efficient phosphorylation of Thr(11) in Cds1 by Rad3. Phosphorylation of Thr(11) has been shown previously to promote autophosphorylation of Thr(328) in the kinase domain of Cds1, which directly activates the enzyme, leading to full activation of the checkpoint pathway. Interestingly, phosphorylation of Mrc1 by Rad3 does not require the phosphorylation of Rad9, suggesting that activation of the sensor kinase Rad3 in the replication checkpoint of fission yeast may involve a different mechanism.  相似文献   

15.
The protein kinase Cds1 is an effector of the replication checkpoint in the fission yeast Schizosaccharomyces pombe. Cds1 is required to stabilize stalled replication forks, and it helps to prevent the onset of mitosis until the genome is fully replicated. Mrc1 (mediator of the replication checkpoint-1) and Rad3-Rad26 kinase are required for Cds1 activation, but exactly how Mrc1 mediates Cds1 activation is unknown. Here we show that Mrc1 is required for the initial threonine 11 phosphorylation of Cds1 by Rad3-Rad26. Mrc1 specifically interacts with the forkhead-associated (FHA) domain of Cds1 in yeast two-hybrid assays. Mutations in the FHA domain that abolish this interaction also eliminate Thr-11 phosphorylation of Cds1. Weak Thr-11 phosphorylation of a "kinase-dead" mutant of Cds1 is rescued by co-expression of wild type Cds1. The requirement for Mrc1 in the replication checkpoint can be partially eliminated by expression of a Rad26-Cds1 fusion protein. These findings suggest that recognition of Mrc1 by the FHA domain of Cds1 serves to recruit Cds1 to Rad3-Rad26. This interaction mediates the initial Thr-11 phosphorylation of Cds1 by Rad3-Rad26 with subsequent intermolecular phosphorylation events leading to full activation of Cds1.  相似文献   

16.
Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes.  相似文献   

17.
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork “collapse point” in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.  相似文献   

18.
Fission yeast checkpoint protein Rad17 is required for the DNA integrity checkpoint responses. A fraction of Rad17 is chromatin bound independent of the other checkpoint proteins throughout the cell cycle. Here we show that in response to DNA damage induced by either methyl methanesulfonate treatment or ionizing radiation, increased levels of Rad17 bind to chromatin. Following S-phase stall induced by hydroxyurea or a cdc22 mutation, the chromatin-bound Rad17 progressively dissociates from the chromatin. After S-phase arrest by hydroxyurea in cds1Delta or rad3Delta cells or by replication mutants, Rad17 remains chromatin bound. Rad17 is able to complex in vivo with an Rfc small subunit, Rfc2, but not with Rfc1. Furthermore, cells with rfc1Delta are checkpoint proficient, suggesting that Rfc1 does not have a role in checkpoint function. A checkpoint-defective mutant protein, Rad17(K118E), which has similar nuclear localization to that of the wild type, is unable to bind ATP and has reduced ability in chromatin binding. Mutant Rad17(K118E) protein also has reduced ability to complex with Rfc2, suggesting that Lys(118) of Rad17 plays a role in Rad17-Rfc small-subunit complex formation and chromatin association. However, in the rad17.K118E mutant cells, Cds1 can be activated by hydroxyurea. Together, these results suggest that Rad17 binds to chromatin in response to an aberrant genomic structure generated from DNA damage, replication mutant arrest, or hydroxyurea arrest in the absence of Cds1. Rad17 is not required to bind chromatin when genomic structures are protected by hydroxyurea-activated Cds1. The possible checkpoint events induced by chromatin-bound Rad17 are discussed.  相似文献   

19.
The fission yeast Hsk1p kinase is an essential activator of DNA replication. Here we report the isolation and characterization of a novel mutant allele of the gene. Consistent with its role in the initiation of DNA synthesis, hsk1(ts) genetically interacts with several S-phase mutants. At the restrictive temperature, hsk1(ts) cells suffer abnormal S phase and loss of nuclear integrity and are sensitive to both DNA-damaging agents and replication arrest. Interestingly, hsk1(ts) mutants released to the restrictive temperature after early S-phase arrest in hydroxyurea (HU) are able to complete bulk DNA synthesis but they nevertheless undergo an abnormal mitosis. These findings indicate a second role for hsk1 subsequent to HU arrest. Consistent with a later S-phase role, hsk1(ts) is synthetically lethal with Deltarqh1 (RecQ helicase) or rad21ts (cohesin) mutants and suppressed by Deltacds1 (RAD53 kinase) mutants. We demonstrate that Hsk1p undergoes Cds1p-dependent phosphorylation in response to HU and that it is a direct substrate of purified Cds1p kinase in vitro. These results indicate that the Hsk1p kinase is a potential target of Cds1p regulation and that its activity is required after replication initiation for normal mitosis.  相似文献   

20.
Papillomaviruses contain small double-stranded DNA genomes that are maintained in persistently infected mammalian host epithelia as nuclear plasmids and rely upon the host replication machinery for replication. Papillomaviruses encode a DNA helicase, E1, which can specifically bind to the viral genome and support DNA synthesis. Under some conditions in mammalian cells, E1 is not required for viral DNA synthesis, leading to the hypothesis that papillomavirus DNA can be replicated solely by the host replication machinery. This machinery is highly conserved among eukaryotes. We and others found that papillomavirus DNA could replicate in a simple eukaryote, Saccharomyces cerevisiae. Specifically, papillomavirus DNA could substitute for the function of the autonomously replicating sequence (ARS) and centromere (CEN) elements that are normally both required for the stable replication of extrachromosomal DNAs in yeast. Furthermore, this form of replication in yeast was E1 independent. In this study, we map the elements in the human papillomavirus type 16 (HPV16) genome that can substitute for yeast ARS and CEN elements. A single element, termed rep, was identified that can substitute for ARS, and multiple elements, termed mtc, could substitute for CEN. The location of one of these mtc elements overlaps the location of rep, and this approximately 1,000-bp region of HPV16 was sufficient to support stable replication of a bacterial-yeast shuttle plasmid deleted of both ARS and CEN elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号