首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WOKW (Wistar Ottawa Karlsburg W) rats develop metabolic syndrome closely resembling human disorder. In crossing studies between disease‐prone WOKW and disease‐resistant DA (Dark Agouti) rats, several quantitative trait loci (QTLs) were mapped. To prove the in vivo relevance of QTLs, congenic DA.WOKW rats, briefly termed DA.3aW, DA.3bW, DA.5W, DA.10W, and DA.16W, were generated by transferring chromosomal regions of WOKW chromosomes 3, 5, 10, and 16 onto DA genetic background. Male (n = 12) and female (n = 12) rats of each congenic strain and their parental strain DA were characterized for adiposity index (AI), serum leptin, and serum insulin as well as serum cholesterol and serum triglycerides as single facets of metabolic syndrome at the age of 30 weeks. The data showed a significant higher AI for male and female DA.3aW and female DA.16W compared with DA. Serum leptin was significantly elevated in male and female DA.3aW, DA.10W, and DA.16W rats in comparison with DA. Rats of both sexes of DA.10W and female DA.16W showed significantly elevated serum insulin in comparison to DA. Female rats of all congenics had significantly higher serum cholesterol compared with DA, while males did not differ. Finally, triglycerides were only elevated in male DA.16W. The results demonstrate an involvement of WOKW chromosomes 3, 5, 10, and 16 in developing facets of the metabolic syndrome.  相似文献   

2.
3.
4.
WOKW rats develop a complete metabolic syndrome closely resembling human disease. Since genetic studies using male (WOKW x DA)F2 progeny showed that several independent genetic factors were involved, a polygenic basis for the syndrome in WOKW was assumed. However, because the metabolic syndrome in human clearly demonstrates sex differences, we have extended our study to include both male and female (WOKW x DA)F2 progeny in a genome-wide scan. Male- or female-specific quantitative trait loci (QTLs) were mapped for body weight, body mass index, adiposity index and serum insulin on chromosomes 1 and 5, serum triglycerides on chromosomes 4, 7, 11, and 16, serum total and high density lipoprotein cholesterol on chromosomes 3, 4, 5, 10, and 17, and serum leptin on chromosomes 8 and 16 as well as blood glucose and glucose tolerance (AUC) on chromosomes 3, 4 and 17. QTLs for both, males and females were only found for body weight on chromosome 1 and for serum total cholesterol on chromosome 3 and 10. These findings clearly demonstrate that there are sex-specific and sex-independent QTLs for facets of the metabolic syndrome in WOKW rats.  相似文献   

5.
It has been recently reported that activation of PPAR-delta, by specific agonists or genetic manipulation, alleviates dyslipidemia, hyperglycemia, and insulin resistance in animal models of obesity and type 2 diabetes. The purpose of the present study was to determine whether the PPAR-delta agonist has a direct effect on adipokines in visceral adipose tissue of rats and in cultured adipocytes. We examined the expression of visfatin, adiponectin, and resistin mRNA in visceral adipose tissue of Wistar rats fed a high-fat diet and 3T3-L1 adipocytes treated with PPAR-delta agonist (L-165041). Body weight and biochemical measurements were performed. Rats fed a high-fat diet showed a greater increase in body weight than those fed a standard diet (P<0.05), and treatment with L-165041 (10 mg/kg/day) significantly decreased weight gain (P<0.05). The concentration of total cholesterol was lower, and HDL cholesterol was higher in L-165041-treated rats (P<0.05). In the visceral adipose tissue of L-165041-treated rats, visfatin and adiponectin mRNA levels significantly increased compared to those of the untreated rats (P<0.05). However, the expression of resistin decreased in the L-165041-treated rats. Furthermore, in cultured 3T3-L1 adipocytes, the level of visfatin and adiponectin mRNA was up-regulated in response to L-165041 treatment for nine days. By contrast, resistin mRNA levels were down-regulated by L-165041 treatment. The present study provides a novel evidence to suggest that the PPAR-delta agonist has regulatory effects on a variety of adipokines, and these effects might explain some of their metabolic function.  相似文献   

6.
Aquaglyceroporin 7 (AQP7) is a glycerol transporter expressed in adipocytes. Its expression has been shown to be modulated in obesity. Metabolic syndrome is characterized by abdominal obesity, insulin resistance, dyslipidemia, and hypertension. An animal model displaying several features of metabolic syndrome was used to study the AQP7 expression at both mRNA and protein level and glycerol flux in adipocytes. Second generation n3-PUFA depleted female rats is a good animal model for metabolic syndrome as it displays characteristic features such as liver steatosis, visceral obesity, and insulin resistance. Our data show a reduced expression of AQP7 at the protein level in adipose tissue from n3-PUFA-depleted rats, without any changes at the mRNA levels. [U-(14)C]-Glycerol uptake was not modified in adipocytes from n3-PUFA-depleted animals.  相似文献   

7.
Central obesity is associated with low-grade inflammation that promotes type 2 diabetes and cardiovascular disease in obese individuals. The 12- and 5-lipoxygenase (12-LO and 5-LO) enzymes have been linked to inflammatory changes, leading to the development of atherosclerosis. 12-LO has also been linked recently to inflammation and insulin resistance in adipocytes. We analyzed the expression of LO and proinflammatory cytokines in adipose tissue and adipocytes in obese Zucker rats, a widely studied genetic model of obesity, insulin resistance, and the metabolic syndrome. mRNA expression of 12-LO, 5-LO, and 5-LO-activating protein (FLAP) was upregulated in adipocytes and adipose tissue from obese Zucker rats compared with those from lean rats. Concomitant with increased LO gene expression, the 12-LO product 12-HETE and the 5-LO products 5-HETE and leukotriene B4 (LTB4) were also increased in adipocytes. Furthermore, upregulation of key proinflammatory markers interleukin (IL)-6, TNFα, and monocyte chemoattractant protein-1 were observed in adipocytes isolated from obese Zucker rats. Immunohistochemistry indicated that the positive 12-LO staining in adipose tissue represents cells in addition to adipocytes. This was confirmed by Western blotting in stromal vascular fractions. These changes were in part reversed by the novel anti-inflammatory drug lisofylline (LSF). LSF also reduced p-STAT4 in visceral adipose tissue from obese Zucker rats and improved the metabolic profile, reducing fasting plasma glucose and increasing insulin sensitivity in obese Zucker rats. In 3T3-L1 adipocytes, LSF abrogated the inflammatory response induced by LO products. Thus, therapeutic agents reducing LO or STAT4 activation may provide novel tools to reduce obesity-induced inflammation.  相似文献   

8.
The distribution of fat in obese persons is related to the risk of developing various metabolic disorders, such as glucose intolerance, dyslipidemia and hypertension, and the combination of these conditions is known as the metabolic syndrome. The aim of this study was to investigate the role of subcutaneous fat in regulating insulin resistance and its influence on TNF-alpha expression in visceral fat, by using mice that were subjected to subcutaneous lipectomy with or without subsequent fat transplantation. After partial subcutaneous lipectomy, mice showed significantly greater accumulation of visceral fat compared with sham-operated control mice. Lipectomy led to higher plasma insulin and lower plasma glucose levels after loading with glucose and insulin, respectively, compared with the levels in control mice. Insulin-induced phosphorylation of IRS-1 was decreased in the skeletal muscles of lipectomized mice. Subcutaneous transplantation of fat pads into lipectomized mice reversed the above-mentioned changes indicating insulin resistance in these animals. The fat storage area of adipocytes and TNF- alpha expression by adipocytes in visceral fat were significantly higher in the lipectomized mice than in controls, while subcutaneous transplantation of fat reduced both the fat storage area and TNF-alpha expression. The insulin resistance of lipectomized mice was also ameliorated by systemic neutralization of TNF-alpha activity using a specific antibody. These findings obtained in mice subjected to subcutaneous lipectomy with/without subsequent fat transplantation indicate that subcutaneous fat regulates systemic insulin sensitivity, possibly through altering fat storage and the expression of TNF-alpha by adipocytes in visceral fat. The balance between accumulation of subcutaneous fat and visceral fat may be important with respect to the occurrence of systemic insulin resistance in the metabolic syndrome.  相似文献   

9.
Objective: We applied a comparative functional genomics approach to evaluate whether diet‐induced obese (DIO) rats serve as an effective obesity model. Methods and Procedures: Gene‐expression profiles of epididymal fat from DIO and lean rats were generated using microarrays and compared with the published array data of obese and non‐obese human subcutaneous adipocytes. Results: Caloric intake and fuel efficiency were significantly higher in DIO rats, which resulted in increased body weight and adiposity. Circulating glucose, cholesterol, triglyceride, insulin, and leptin levels in DIO rats were significantly higher than those in the lean controls. DIO rats also exhibited impaired insulin sensitivity. A direct comparison of gene‐expression profiles from DIO and lean rats and those from obese and non‐obese humans revealed that global gene‐expression patterns in DIO rat fat resemble those of obese human adipocytes. Differentially expressed genes between obese and non‐obese subjects in both human and rat studies were identified and associated with biological pathways by mapping genes to Gene Ontology (GO) categories. Immune response–related genes and angiogenesis‐related genes exhibited significant upregulation in both obese humans and DIO rats when compared with non‐obese controls. However, genes in fatty acid metabolism and oxidation exhibited a broad downregulation only in obese human adipocytes but not in DIO rat epididymal fat. Discussion: Our study based on gene‐expression profiling suggested that DIO rats in general represent an appropriate obesity model. However, the discrepancies in gene‐expression alterations between DIO rats and obese humans, particularly in the metabolic pathways, may explain the limitations of using DIO rodent models in obesity research and drug discovery.  相似文献   

10.
目的内脂素(visfatin)也被叫做尼克酰胺磷酸核糖基转移酶,是一种脂肪因子,研究表明其与肥胖有关,但是与脂肪积累的关系仍然不明确,本研究是以内脂素转基因和内脂素基因敲除杂合子小鼠为对象,研究内脂素与脂肪积累的关系。方法 Western blot法对比分析转基因、基因敲除杂合子和野生型小鼠脂肪组织中内脂素表达水平。从2月龄开始对3种雌性小鼠饲喂高脂饲料,分别在2、4、6、8、9月龄测定其体重变化,并在9月龄时利用磁共振成像定性观测小鼠脂肪积累及分布,称量皮下和腹腔脂肪总重量并对腹腔脂肪组织进行组织学观察。结果内脂素转基因小鼠脂肪组织中内脂素的表达量比野生小鼠增加37%,基因敲除杂合子小鼠比野生小鼠降低了55%。饲喂7个月高脂饲料后,转基因小鼠体重平均27.8±0.8 g,野生小鼠体重平均33.6±1.1 g,基因敲除杂合子小鼠体重平均37.6±1.9 g。皮下和腹腔脂肪总重量测定结果显示转基因小鼠的脂肪总重量比野生小鼠降低了40%,基因敲除杂合子小鼠的脂肪总重量比野生小鼠增加了37%,组织学染色显示,内脂素转基因小鼠的平均单个脂肪细胞面积最小,而基因敲除杂合子小鼠面积最大。结果证实,内脂素表达量与体重、皮下和内脏脂肪总重量及脂肪细胞大小呈负相关。结论在饲喂高脂饲料的情况下,内脂素可以抑制脂肪的积累。  相似文献   

11.
Resistin, the peptide specifically secreted from adipocytes, is a hormone antagonistic to insulin action and, thus, may serve as a link between human obesity due to adiposity and insulin resistance associated with type 2 diabetes. To test this hypothesis, we studied the gene expression of resistin in adipocytes isolated from rats fed with a fructose diet which induced insulin resistance. Compared to the control rats (C) on a normal chow diet, the fructose-fed rats (F) developed hyperinsulinemia, glucose intolerance, hypertriglyceridemia and hypertension, a profile reminiscent of the syndrome X of patients with non-insulin-dependent diabetes mellitus (NIDDM). The F rats had significantly elevated plasma free fatty acids (FFA), enlarged epididymal fat pads, and increased adipocyte size compared with the C rats. We examined the glucose transport and the relative quantity of resistin mRNA produced in the adipocytes of these two groups of rats. Compared to the C rats, the F rats had a clearly reduced insulin-stimulated glucose transport. The gene expression of resistin and other adipocyte peptides was measured on the mRNA by semiquantitative RT-PCR; the validity of this technique was established in advance with a rat-fasting and then refeeding experiment. The F rats showed a decreased expression of the resistin gene, whereas gene expression of leptin and angiotensinogen in contrast increased. Free fatty acids were found to suppress the expression of resistin gene in normal rat adipocytes. These results demonstrate that an insulin-resistant instance in the fructose diet rat model exists with the decreased gene expression of resistin.  相似文献   

12.
13.
Obesity is the presence of either abnormal absolute amount or relative proportion of body fat. Contrary to gluteal obesity, visceral obesity is associated with different metabolic alterations including insulin resistance (IR). A relatively new adipocytokine visfatin is shown to be expressed predominantly in visceral fat and exhibit insulin-mimicking effects in rodents. It is still unclear whether serum visfatin levels are associated with increased total or visceral fat mass in humans. The aim of our study was to investigate the relation between visfatin and obesity parameters namely body mass index (BMI) and waist circumference (WaC) and IR in healthy female subjects. Eighty one female subjects ?20 years of age, having no diagnosis of glucose intolerance or diabetes, hypertension and dyslipidemia were chosen. The patients were divided into four groups according to their BMI and WaC values. Serum visfatin and HOMA-IR levels did not differ among groups. No correlation was detected between serum visfatin levels and obesity and metabolic parameters. In conclusion, we demonstrated that body fat distribution did not affect serum visfatin levels in healthy female subjects. Further studies are needed to clarify the exact factors influencing and determining serum visfatin levels and its clinical reflections.  相似文献   

14.
Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.  相似文献   

15.
Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway   总被引:5,自引:0,他引:5  
Visfatin is a secretory protein which exerts insulin mimetic and proinflammatory effects, also functioning as an intracellular enzyme to produce NAD. Plasma visfatin levels and visfatin mRNA expression in adipose tissues are increased in obese subjects. Visfatin does not have a decent cleavable signal sequence, and the mechanism, that mediates release of visfatin from adipocytes, remains poorly understood. In this study, we demonstrate that visfatin is released abundantly into culture medium from 3T3-L1 adipocytes. Subcellular fractionation analysis showed that visfatin was localized in the cytosol, but not in nucleus, membrane, vesicles, or mitochondria fractions. Visfatin release was not reduced by Brefeldin A and Monensin, inhibitors of endoplasmic reticulum (ER)-Golgi-dependent secretion. In addition, visfatin was not released on microvesicles. These results suggest that visfatin should be released from 3T3-L1 adipocytes via an ER-Golgi or microvesicles independent pathway.  相似文献   

16.
17.
PURPOSE OF REVIEW: The aim of this article is to summarize all of the recent studies on pre-B cell colony-enhancing factor visfatin, a ubiquitously expressed secreted protein that has been implicated in obesity and insulin resistance. Although pre-B-cell colony-enhancing factor was discovered over 10 years ago, there are many remaining questions about the regulation and function of this protein. RECENT FINDINGS: Studies in the last decade have revealed the endocrine properties of fat cells. One of the most recent proteins shown to be highly expressed in adipose tissue is visfatin, originally identified as pre-B-cell colony-enhancing factor. Visfatin/pre-B-cell colony-enhancing factor appears to be preferentially produced by the visceral adipose tissue and has insulin mimetic actions. Studies by many groups indicate that obesity-related diabetes and accompanying metabolic disorders in humans have been specifically linked to increased visceral adipose tissue mass. The different roles of various adipocyte depots, however, are still poorly understood. It has been hypothesized that understanding the differences in the biology of visceral and subcutaneous human adipose tissue may hold the key to therapeutic strategies aimed at reducing obesity-induced insulin resistance and alleviating symptoms of the metabolic syndrome. Interestingly, some observed actions of visfatin indicate that this secreted protein may be an interesting therapeutic target. Several recent studies, however, indicate that our understanding of visfatin is still speculative. SUMMARY: This review summarizes all of the papers in the last year on the expression and function of visfatin/pre-B-cell colony-enhancing factor and highlights inconsistent observations from various investigators studying this protein. It also highlights previous observations on the role of pre-B-cell colony-enhancing factor. We suggest that the pathophysiologic role of visfatin/pre-B-cell colony-enhancing factor in humans remains largely unknown.  相似文献   

18.
19.
The Otsuka Long-Evans Tokushima fatty (OLETF) rat is an animal model of type 2 diabetes, characterized by abdominal obesity, insulin resistance, hypertension, and dyslipidemia. To elucidate the underlying molecular mechanism of obesity and its related complications, we used representational difference analysis and identified the genes more abundantly and specifically expressed in the visceral adipose tissue (VAT) of obese OLETF rats compared with the diabetes-resistant counterpart, that is, Long-Evans Tokushima Otsuka (LETO) rats. By Northern blot analysis, we confirmed the differential expression of 13 genes, including 3 novel genes. The upregulated expression of well-characterized lipid metabolic enzymes, such as lipoprotein lipase, phosphoenolpyruvate carboxykinase, and cholesterol esterase, were observed in VAT of OLETF rats. We demonstrated the differential expression of secreted proteins in VAT of OLETF rats, such as thrombospondin 1 and contrapsin-like protease inhibitor. In contrast to lipid enzymes, the secreted proteins revealed exclusive mRNA expression and they were not detected in VAT of LETO rats. Furthermore, the novel genes OL-16 and OL-64 were also expressed specifically in VAT of OLETF rats and were absent in that of LETO rats and other tissues, including subdermal and brown adipose tissues. The C-terminal partial amino acid sequence of OL-64 revealed that it showed approximately 40% homology with alpha(1)-antitrypsin and it seemed to be a new member of the serine proteinase inhibitor (SERPIN) gene family. VAT of OLEFT rats had a unique gene expression profile, and the accumulated VAT-specific known and novel secreted proteins may play a role(s) in the pathogenesis of obesity and its related complications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号