首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversion of a streptomycin-dependent strain of Escherichia coli   总被引:13,自引:0,他引:13  
Summary A streptomycin dependent, spectinomycin resistant mutant ofEscherichia coli was used to select spontaneous phenotypic revertants to non-dependence on streptomycin. The ribosomes from one such revertant, which is inhibited by both streptomycin and spectinomycin, were analyzedin vitro. The altered protein responsible for the suppression of the streptomycin dependent phenotype was identified; this protein is 30S-10. The genetic locus for this mutation is a newly identified locus and it has been positioned close to thestr locus. The identification of the altered component responsible for the suppression of the spectinomycin resistant phenotype may be the same as that for the streptomycin dependent phenotype, but this is unproven.  相似文献   

2.
Summary Specitinomycin-resistant mutants of Bacillus subtilis show three different types of alterations in sporulation ability. Class 1 mutants can both grow and sporulate in the presence of spectinomycin. Class 2 mutants can grow in the presence of spectinomycin, but are unable to sporulate in either the presence or absence of spectinomycin. Class 3 mutants have a conditional phenotype, and are able to sporulate in the absence of spectinomycin, but not in its presence. The ability of these strains to produce alkaline phosphatase, a biochemical marker for early sporulation events, is correlated with the ability to sporulate in the presence or absence of antibiotic. All of the spectinomycin-resistance mutations could be genetically linked to the cysA marker, and a mutational alteration of a protein of the 30S ribosomal subunit has been identified in one of the Class 3 strains (Spc1–11). Fine-structure mapping of the spectinomycin resistance mutation of strain Spc 1–11 confirmed its location in the cluster of genes for ribosomal components on the B. subtilis genetic map. Genetic analysis indicated that the properties of the Class 1 and Class 2 mutants result from more than one mutation. The spectinomycin-resistance and altered sporulation properties of the two Class 3 mutants probably result from a single genetic lesion.  相似文献   

3.
Summary 26 cold-resistant revertants of a cold-sensitiveEscherichia coli mutant with an altered ribosomal protein S8 were analyzed for their ribosomal protein pattern by two-dimensional polyacrylamide gel electrophoresis. It was found that 16 of them had acquired the apparent wild-type form of protein S8, one exhibits a more strongly altered S8 than the original mutant and two revertants regained the wild-type form of S8 and, in addition, possess alterations in protein L30. The ribosomes of the residual revertants showed no detectable difference from those of the parental S8 mutant.The mutation leading to the more strongly altered S8 was genetically not separable from the primary S8 mutation; this indicates that both mutations are very close to each other or at the same site. The structural gene for ribosomal protein L30 was mapped relative to two other ribosomal protein genes (for proteins S5 and S8) by the aid of one of the L30 mutants: The relative order obtained is:aroE....rpmD(L30)....rpsE(S5)....rpsH(S8)....THe L30 mutation impairs growth and ribosomal assembly at 20°C and is therefore the first example of a mutant with a defined 50S alteration that has (partial) cold-sensitive ribosome assembly. A double mutant was constructed which possesses both the S8 and the L30 mutations. It was found that the L30 mutation had a slight antagonistic effect on the growth inhibition caused by the S8 mutation. Thus the L30 mutants might have possibly arisen from the original S8 mutants first as S8/L30 double mutants which was followed by the loss of the original S8 lesion.  相似文献   

4.
Summary A temperature sensitive mutant of Escherichia coli was found to have two mutational alterations of its ribosomes: one of these was a streptomycin dependent mutation and the other was a suppressor alteration of S4, with a marked structural change. The altered form of S4 was studied in a strain that was constructed so that this alteration was the only one effecting the structure of the ribosome. Here, it was shown that the mutant form of S4 cause a temperature sensitive defect in the assembly of 30S subunits in vivo which is reflected in the inability of this mutant to properly process ribosomal RNA at the restrictive temperatures. An analysis of both transductants and revertants of this mutant show that the suppression of the streptomycin dependence phenotype, temperature sensitivity, and a defect in RNA processing all have their origin in a single mutational event effecting the structural gene for S4.  相似文献   

5.
Summary Mutants of Bacillus subtilis dependent on the antibiotic kasugamycin have been isolated and characterised. The mutant phenotype was the result of a kasugamycin resistance mutation mapping near leu, together with a mutation conferring dependence which mapped elsewhere on the chromosome. In some cases, the latter mutation caused spectinomycin dependence in a spectinomycin resistant strain. Four mutants had detectable alterations in ribosomal proteins, which were not, however, responsible for the phenotype. These alterations were in proteins BS3, BS7, BS9, and BL15. Some mutants had defects in ribosomal subunit assembly, or altered cell morphology associated with the mutant phenotype.  相似文献   

6.
A thermosensitive mutant (JE386) of Escherichia coli which harbours an alteration in protein S5 of the smaller ribosomal subunit has been isolated. Genetic studies have shown that the lesion causing thermosensitivity also causes the alteration in protein S5, and that this mutation is not in the structural gene for S5 (rpsE). Hence the mutation has been termed rimJ (ribosomal modification). Protein-chemical studies of protein S5 purified from JE386 and its wild-type parent indicated an alteration in the N-terminal tryptic peptide. Amino acid sequence analysis of the N-terminal peptides showed complete homology between wild-type and mutant, suggesting that the N-terminal modification (acetylation) of the parent was absent in the mutant. Gradient transmission mapping has located the rimJ mutation at 31 minutes on the current E. coli genetic map. By constructing a derivative of the mutant heterozygous for rimJ, it has been found that the wild-type allele is dominant over the mutant one. Ts+ revertants of JE386 have been isolated which show either a wild-type ribosomal protein electrophoresis pattern, or an additional alteration in either protein S4 or S5. The mutations in S4 and S5 may compensate the lesion caused by the rimJ mutation of JE386, that is even though the N-terminus of S5 remains unacetylated, bacteria can grow at 42 °C. Furthermore, a mutation near or at strA carried by JE386 has been found to be involved in the phenotypic expression of the rimJ mutation. This mutation was also found to be present in four other strA mutants. Possible implications of the modification of ribosomal proteins in vivo are discussed.  相似文献   

7.
Summary Two modes of ColE1 DNA replication are known, one dependent on RNase H, and the other RNase H independent. The cer114 mutant of the ColE1 replicon is defective in both modes and carries a single base pair alteration 95 by upstream of the replication origin. An Escherichia coli mutant which restored maintenance of the cer114 replicon was isolated. This host suppressor mutant is defective in RNase H and carries a herC, mutation located at 62 min of the E. coli chromosome. The herC, mutation is recessive to its wild-type allele and supports maintenance of the mutant replicon in the absence of RNase H. The herC, mutation alone conferred cold-sensitive growth, suggesting that the herC, gene product is essential for cell growth. The 1832 by E. coli DNA fragment, containing the wild-type allele of the herC, mutation, was cloned and an open reading frame for the HerC protein was determined.  相似文献   

8.
Two single-base mutations in 16S rRNA conferring high-level resistance to spectinomycin were isolated on a plasmid-borne copy of the rrnD operon from Salmonella enterica serovar Typhimurium. Neither of the mutations (C1066U and C1192U) had appreciable effects on cell growth, but each had differential effects on resistance to spectinomycin and fusidic acid. Both mutations also conferred resistance to spectinomycin in Escherichia coli strains containing deletions of all seven chromosomal rrn operons and expressing plasmid-encoded Salmonella rRNA exclusively. In contrast, when expressed in E. coli strains containing intact chromosomal rrn operons, the strains were sensitive to spectinomycin. However, chromosomal mutations arose that allowed expression of the rRNA-dependent spectinomycin resistance phenotype. It is proposed that in heterogeneous rRNA populations, the native E. coli rRNA out-competes the heterologous Salmonella rRNA for binding to ribosomal proteins, translation factors, or ribosome assembly, thus limiting entry of the antibiotic-resistant 30S subunits into the functioning ribosome pool. Received: 28 September 2001 / Accepted: 26 March 2002  相似文献   

9.
Suppression of streptomycin dependence in Escherichia coli strain K-114, a spectinomycin-sensitive strain, is correlated with modification of 30S ribosomal protein P4, the component modified in spectinomycin-resistant mutants. The mutant is unusual in that reversion from dependence has previously been correlated only with modification in 30S protein P4a. Introduction into K-114 of another mutation conferring spectinomycin resistance results in a further alteration in protein P4.  相似文献   

10.
Jin D  Lu W  Ping S  Zhang W  Chen J  Dun B  Ma R  Zhao Z  Sha J  Li L  Yang Z  Chen M  Lin M 《Current microbiology》2007,55(4):350-355
Glyphosate, a powerful nonselective herbicide, acts as an inhibitor of the activity of the enzyme 5-enoylpyruvylshikimate-3-phosphate synthase (EPSPS) encoded by the aroA gene involved in aromatic amino acid biosynthesis. An Escherichia coli mutant AKM4188 was constructed by insertion a kanamycin cassette within the aroA coding sequence. The mutant strain is an aromatic amino acids auxotroph and fails to grow on M9 minimal media due to the inactive aroA. A DNA metagenomic library was constructed with samples from a glyphosate-polluted area and was screened by using the mutant AKM4188 as recipient. Three plasmid clones, which restored growth to the aroA mutant in M9 minimal media supplemented with chloramphenicol, kanamycin, and 50 mM glyphosate, were obtained from the DNA metagenomic library. One of them, which conferred glyphosate tolerance up to 150 mM, was further characterized. The cloned fragment encoded a polypeptide, designated RD, sharing high similarity with other Class II EPSPS proteins. A His-tagged RD fusion protein was produced into E. coli to characterize the enzymatic properties of the RD EPSP protein.  相似文献   

11.
Summary A series of temperature-resistant revertants were isolated from strains of Escherichia coli K12 carrying a temperature-sensitive mutation in the dnaA gene. Four independent revertants were found which still carry the original ts mutation. The ability of these strains to grow at high temperature is due to a suppressor mutation, called sin. All four sin mutations are located between the genes metD and proA on the genetic map of E. coli, which suggests that they all affect the same gene. The sin suppressors, which were isolated for their ability to suppress one dnaA mutation, are also able to suppress three other temperature-sensitive dnaA mutations, but they are not able to suppress mutations in either of the two genes dnaB or dnaC. The sin suppressors alone do not confer any particular phenotype on bacteria, but they are deficient in the enzyme RNase H. On the basis of these findings we propose that the function of the dnaA protein is to protect a DNA-RNA hybrid at the origin of replication against RNase H.  相似文献   

12.
Summary Ribosomal protein S5 was isolated from wild type Bacillus subtilis ATCC 6633 and from a spectinomycin resistant mutant (BSPC 111) derived from spectinomycin sensitive to resistance is accomtrypsin and all the tryptic peptides were isolated by column- and paper-chromatography. By comparative amino acid analyses of the peptides, it was demonstrated that the S5 from the mutant differs from the wild type S5 by a replacement of one amino acid, namely lysine by isoleucine in the peptide T9. The results are compared with E. coli spectinomycin resistant mutants.  相似文献   

13.
Summary E. coli strains carrying the rnc-105 allele do not show any level of RNase III in extracts, grow slower than rnc + strains at temperatures up to 45°C and fail to grow at 45°C. Revertants which can grow at 45°C were isolated. The vast majority of them still do not grow as fast as rnc + strains and did not regain RNase III activity. The mutation(s) which caused them are suppressor mutations (physiological suppressors) which do not map in the immediate vicinity of the rnc gene. A few of the revertants regain normal growth, and contain normal levels of RNase III. They do not harbor the rnc-105 allele and therefore are considered to be true revertants. By using purines other than adenine it was possible to isolate rnc + pur - revertants from an rnc - pur - strain with relative ease. They behaved exactly like the true rnc + revertants isolated from rnc - strains at 45°C.A merodiploid strain which contains the rnc + gene on an episome behaves exactly like an rnc + strain with respect to growth and RNA metabolism, eventhough its specific RNase III activity is about 60% of that of an rnc + strain; thus the level of RNase III is not limiting in the cell.The rnc - strains show a characteristic pattern of transitory molecules, related to rRNA, 30S, 25S, p23 and 18S, which are not observed in rnc + strains. This pattern is unchanged in rnc - strains and in the revertants which are still lacking RNase III, regardless of the temperature in which RNA synthesis was examined (30° to 45°C). On the other hand, in the rnc + strains as well as in the true revertants and the rnc +/rnc - merodiploid, the normal pattern of p16 and p23 is observed at all temperatures. These findings suggest that all the effects observed in RNase III- strains are due to pleiotropic effects of the rnc-105 allele, and that the enzyme RNase III is not essential for the viability of the E. coli cell.  相似文献   

14.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12.  相似文献   

15.
Summary Yeast strain 990 carries a mutation mapping to the oli1 locus of the mitochondrial genome, the gene encoding ATPase subunit 9. DNA sequence analysis indicated a substitution of valine for alanine at residue 22 of the protein. The strain failed to grow on nonfermentable carbon sources such as glycerol at low temperature (20°C). At 28°C the strain grew on nonfermentable carbon sources and was resistant to the antibiotic oligomycin. ATPase activity in mitochondria isolated from 990 was reduced relative to the wild-type strain from which it was derived, but the residual activity was oligomycin resistant. Subunit 9 (the DCCD-binding proteolipid) from the mutant strain exhibited reduced mobility in SDS-polyacrylamide gels relative to the wild-type proteolipid. Ten revertant strains of 990 were analyzed. All restored the ability to grow on glycerol at 20°C. Mitotic segregation data showed that eight of the ten revertants were attributable to mitochondrial genetic events and two were caused by nuclear events since they appeared to be recessive nuclear suppressors. These nuclear mutations retained partial resistance to oligomycin and did not alter the electrophoretic behavior of subunit 9 or any other ATPase subunit. When mitochondrial DNA from each of the revertant strains was hybridized with an oligonucleotide probe covering the oli1 mutation, seven of the mitochondrial revertants were found to be true revertants and one a second mutation at the site of the original 990 mutation. The oli1 gene from this strain contained a substitution of glycine for valine at residue 22. The proteolipid isolated from this strain had increased electrophoretic mobility relative to the wild-type proteolipid.Abbreviations DCCD dicyclohexylcarbodiimide - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - SMP submitochondrial particles - mit- mitochondrial point mutant  相似文献   

16.
Summary Cell free extracts from a streptomycin-resistant E. coli mutant which is also temperature-sensitive for Q phage were studied for suppression of a nonsense mutation at various temperatures. The streptomycin-resistant ribosomes of the mutant were found to be temperature-sensitive in suppression of an amber mutation in f2 phage coat protein while retaining the ability to synthesize proteins at an elevated temperature (42° C). The restriction of amber suppression at 42° C is assumed to be related to an alteration in the ribosomal protein S12 of the streptomycin-resistant mutant which also causes a change in its electrophoretic mobility.  相似文献   

17.
Summary Peptidyl tRNA hydrolase is an essential enzyme for normal growth inasmuch as a mutant strain of Escherichia coli with a temperature-sensitive hydrolase cannot continue protein synthesis at the non-permissive temperature. In the absence of hydrolase peptidyl tRNA rapidly accumulates. Why peptidyl tRNA should be formed is the subject of this report. The rapid rate of protein synthesis is likely one mechanism of formation of peptidyl tRNA. A strA mutant of the hydrolase (pth-1) mutant strain that has a 40% reduction in amino acid polymerization rate can grow at 42° C. StrA mutants with normal polymerization rates, however, cannot grow at 42° C when pth-1 is present. Furthermore, addition of low levels of chloramphenicol (2–4 g/ml) but not several other tested drugs, phenotypically suppressed pth-1 at 42° C. Chloramphenicol, at these concentrations, was found to reduce the amino acid polymerization rate 30–40%. On the other hand, no evidence could be found that amino acyl tRNA selection errors are incorporated into pseudo revertants of the pth-1 strain.This investigation was supported by NSF grant No. PCM 76-11012. Journal Paper No. J-9502 of the Iowa Agriculture and Home Economics Experiment Station. Project No. 2299  相似文献   

18.
Summary A mutation in the cyR1 gene of the fungus Podospora anserina confers resistance to cycloheximide and leads to an alteration of the 60S ribosomal protein L21 (Bégueret et al. 1977). Nine revertants of this mutant were isolated and the properties of these strains were analyzed. It was found that one revertant strain contains a new mutant form of L21. It is proposed that the cyR1 gene is the structural gene for protein L21 and that the alteration of this protein is responsible for the resistance to cycloheximide in vivo.  相似文献   

19.
Summary Mutants of Escherichia coli K12 that are partially or totally defective in induction of major heat-shock proteins and cannot grow at high temperature (42° C) were isolated by localized mutagenesis. These mutants carry a single mutation in the gene htpR (formerly hin) located at min 76 on the E. coli genetic map. Some mutants exhibit delayed (partial) induction of heat-shock proteins or require a higher temperature for induction than the wild type, whereas others are not induced under any of these conditions. The maximum temperature that allows growth varies among different mutants and is correlated with the residual induction capacity. Temperature-resistant revertants obtained from each mutant are fully or partially recovered in heat-shock induction. These results indicate that the inability of htpR mutants to grow at high temperature is due to the defect in heat-shock induction. In addition, a couple of mutants was found that produce significantly higher amounts of heat-shock proteins even at 30° C.The htpR gene has been cloned into plasmid pBR322 using the above mutants, and was localized to a DNA segment of 1.6 kilobase pairs. The mutants harboring certain palsmids that carry a part of htpR produce temperature-resistant recombinants at high frequency. This permits further localization of mutations within the htpR gene. Analysis of proteins encoded by each of the recombinant plasmids including the one carrying a previously isolated amber mutation (htpR165) led to the identification of a protein with an apparent molecular weight of about 36,000 daltons as the htpR gene product.  相似文献   

20.
Summary One class of revertants of a temperature-sensitive alanyl-tRNA-synthetase mutant of Escherichia coli is characterized by a highly increased RNA content. Both stable RNA species, tRNA and rRNA contribute to the increase of the RNA/protein ratio. The RNA oversynthesis by these revertants is independent from the condition of the rel and alaS allels.Genetic analysis of the site responsible for RNA overproduction by means of a strain in which reversion to temperature-resistant growth was accompanied by the inability to grow at temperatures below 30°C (cold-sensitive phenotype) showed a chromosomal location between aroE and str. Zone centrifugation through sucrose gradients revealed that the revertants analysed contain besides a small amount of 70s ribosomal particles a high amount of particles sedimenting in a 41s–43s position in 10 mM magnesium and give rise to slower sedimenting particles in 0.1 mM magnesium ion concentration. The results provide evidence that a regulatory mechanism of RNA synthesis is affected by the ribosomal mutations which is independent from that under the control of the rel gene. Increase of both the tRNA and rRNA ratios relative to protein indicate that both stable RNA species are regulated in a similar manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号