首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sickle cell disease patients receiving hydroxyurea (HU) therapy have shown increases in the production of nitric oxide (NO) metabolites, which include iron nitrosyl hemoglobin (HbNO), nitrite, and nitrate. However, the exact mechanism by which HU forms HbNO in vivo is not understood. Previous studies indicate that the reaction of oxyhemoglobin (oxyHb) or deoxyhemoglobin (deoxyHb) with HU are too slow to account for in vivo HbNO production. In this study, we show that the reaction of methemoglobin (metHb) with HU to form HbNO could potentially be fast enough to account for in vivo HbNO formation but competing reactions of either excess oxyHb or deoxyHb during the reaction reduces the likelihood that HbNO will be produced from the metHb-HU reaction. Using electron paramagnetic resonance (EPR) spectroscopy we have detected measurable amounts of HbNO and metHb during the reactions of oxyHb, deoxyHb, and metHb with excess hydroxylamine (HA). We also demonstrate HbNO and metHb formation from the reactions of excess oxyHb, deoxyHb, or metHb and HA, conditions that are more likely to mimic those in vivo. These results indicate that the reaction of hydroxylamine with hemoglobin produces HbNO and lend chemical support for a potential role for hydroxylamine in the in vivo metabolism of hydroxyurea.  相似文献   

2.
In addition to its capacity to increase fetal hemoglobin levels, other mechanisms are implicated in hydroxyurea's ability to provide beneficial effects to patients with sickle cell disease. We hypothesize that the reaction of hemoglobin with hydroxyurea may play a role. It is shown that hydroxyurea reacts with deoxy-sickle cell hemoglobin (Hb) to form methemoglobin (metHb) and nitrosyl hemoglobin (HbNO). The products of the reaction as well as the kinetics are followed by absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Analysis of the kinetics shows that the reaction can be approximated by a pseudo-first order rate constant of 3.7x10(-4) (1/(s.M)) for the disappearance of deoxy-sickle cell hemoglobin. Further analysis shows that HbNO is formed at an observed average rate of 5.25x10(-5) (1/s), three to four times slower than the rate of formation of metHb. EPR spectroscopy is used to show that the formation of HbNO involves the specific transfer of NO from the NHOH group of hydroxyurea. The potential importance of this reaction is discussed in the context of metHb and HbNO being able to increase the delay time for sickle cell hemoglobin polymerization and HbNO's vasodilating capabilities through conversion to S-nitrosohemoglobin.  相似文献   

3.
We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.  相似文献   

4.
We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.  相似文献   

5.
Although it has been shown that hydroxyurea (HU) therapy produces measurable amounts of nitric oxide (NO) metabolites, including iron nitrosyl hemoglobin (HbNO) in patients with sickle cell disease, the in vivo mechanism for formation of these is not known. Much in vitro data and some in vivo data indicates that HU is the NO donor, but other studies suggest a role for nitric oxide synthase (NOS). In this study, we confirm that the NO-forming reactions of HU with hemoglobin (Hb) or other blood constituents is too slow to account for NO production measured in vivo. We hypothesize that, in vivo, HU is partially metabolized to hydroxylamine (HA), which quickly reacts with Hb to form methemoglobin (metHb) and HbNO. We show that addition of urease, which converts HU to HA, to a mixture of blood and HU, greatly enhances HbNO formation.  相似文献   

6.
Experimental evidence is presented supporting a mechanism of S-nitrosothiol formation and degradation mediated by copper ions using bovine serum albumin, human hemoglobin and glutathione as models. We found that Cu(2+), but not Fe(3+), induces in the presence of NO a fast S-nitrosation of bovine serum albumin and human hemoglobin, and the reaction is prevented by thiol blocking reagents. During the reaction, Cu(+) is accumulated and accounts for destabilization of the S-nitrosothiol formed. In contrast, glutathione rapidly dimerizes in the presence of Cu(2+), the reaction competing with S-nitrosation and therefore preventing the formation of S-nitrosoglutathione. We have combined the presented role of Cu(2+) in S-nitrosothiol formation with the known destabilizing effect of Cu(+), providing a unique simple picture where the redox state of copper determines either the NO release from S-nitrosothiols or the NO scavenging by thiol groups. The reactions described are fast, efficient, and may occur at micromolar concentration of all reactants. We propose that the mechanism presented may provide a general method for in vitro S-nitrosation.  相似文献   

7.
Nitric oxide (NO) is an important biological regulator. It can bind to heme iron and form NO+, involved in the synthesis of S-nitrosothiols (-SNOs). NO reacts with human hemoglobin (Hb) to produce the derivatives: S-nitrosylhemoglobin (-SNOHb) and nitrosylhemoglobin (HbNO). At neutral pH values, free NO does not react directly with the -SH groups of Hb. The reductive nitrosylation of Fe(III) heme upon reaction with NO has long been studied, but it is not yet completely known. To quantify the reaction of NO with Hb, we developed a new, sensitive (nanomolar concentration range) electrochemical assay to selectively measure HbNO and -SNOHb. The assay also allows the monitoring of free NO during the reaction with human Fe(III)Hb and Fe(II)HbO(2).  相似文献   

8.
The conversion of NO into its congeners, nitrosonium (NO+) and nitroxyl (HNO/NO-) species, has important consequences in NO metabolism. Dinitrosyl iron complex (DNIC) combined with thiol ligands was shown to catalyze the conversion of NO into NO+, resulting in the synthesis of S-nitrosothiols (RSNO) both in vitro and in vivo. The formation mechanism of DNIC was proposed to involve the intermediate release of nitroxyl. Since the detection of hydroxylamine (as the product of a rapid reaction of HNO/NO- with thiols) is taken as the evidence for nitroxyl generation, we examined the formation of hydroxylamine, RSNO, and nitrite (the product of a rapid reaction of NO+ with water) in neutral solutions containing iron ions and thiols exposed to NO under anaerobic conditions. Hydroxylamine was detected in NO treated solutions of iron ions in the presence of cysteine, but not glutathione (GSH). The addition of urate, a major "free" iron-binding agent in humans, to solutions of GSH and iron ions, and the subsequent treatment of these solutions with NO increased the synthesis of GSNO and resulted in the formation of hydroxylamine. This caused a loss of urate and yielded a novel nitrosative/nitration product. GSH attenuated the urate decomposition to such a degree that it could be reflected as the function of GSH:urate. Results described here contribute to the understanding of the role of iron ions in catalyzing the conversion of NO into HNO/NO- and point to the role of uric acid not previously described.  相似文献   

9.
The discovery that hemoglobin (Hb) in erythrocytes contains a fraction of beta-Cys-93 thiols as the nitrosylated derivative (HbSNO) led to the suggestion that this species is involved in transporting and releasing nitric oxide, which is the signal for local vasodilation. The release of NO from HbSNO requires an electron transfer to facilitate release and to regenerate the cysteine thiol via one-electron reduction in the absence of added thiols. An alternative mechanism, which has received much attention, transfers the nitrosyl group to an external thiol, which in turn would have to be reduced. The observed first order rate constant for the spontaneous oxidation of the ferrous heme of deoxy HbSNO is 1.0 x 10(-4)s(-1) in the absence of thiols. Under the same conditions, native Hb is stable. The oxidation of HbSNO occurs with the same rate constant that can be derived for the rate reported for the formation of HbNO from HbSNO. These similarities suggest that both processes involve the same reaction: internal electron transfer and direct release of nitric oxide.  相似文献   

10.
The reaction of deoxyhemoglobin with nitric oxide (NO) or nitrite ions (NO 2 (-)) produces iron-nitrosyl-hemoglobin (HbNO) in contrast to the reaction with oxyhemoglobin, which produces methemoglobin and nitrate (NO 3 (-)). HbNO has not been associated with the known bioactivities of NO. We hypothesized that HbNO in erythrocytes could be an important source of bioactive NO/nitrite if its oxidation was coupled to the ascorbic acid (ASC) cycle. Studied by absorption and electron paramagnetic resonance (EPR) spectroscopy, DHA oxidized HbNO to methemoglobin and liberated NO from HbNO as determined by chemiluminescence. Both DHA and ascorbate free radical (AFR), the intermediate between ASC and DHA, enhanced NO oxidation to nitrite, but not nitrate; nor did either oxidize nitrite to nitrate. DHA increased the basal levels of nitrite in erythrocytes, while the reactions of nitrite with hemoglobin are slow. In erythrocytes loaded with HbNO, HbNO disappeared after DHA addition, and the AFR signal was detected by EPR. We suggest that the ASC-AFR-DHA cycle may be coupled to that of HbNO-nitrite and provide a mechanism for the endocrine transport of NO via hemoglobin within erythrocytes, resulting in the production of intracellular nitrite. Additionally, intracellular nitrite and nitrate seem to be largely generated by independent pathways within the erythrocyte. These data provide a physiologically robust mechanism for erythrocytic transport of NO bioactivity allowing for hormone-like properties.  相似文献   

11.
S-Nitrosohemoglobin (SNO-Hb) has been suggested to act as an endogenous NO donor and physiological regulator of blood pressure. However, the mechanisms responsible for the formation of SNO-Hb and those underlying the release of NO and subsequent biological activity have yet to be elucidated. In the present study, a number of nitrosated oxyhemoglobin (HbO(2)) derivatives have been synthesized and characterized. HbO(2) can be nitrosated at up to three distinct residues, one in the alpha-globin chain and two in the beta-chain. A beta-chain mononitrosated species (designated "SNO-Hb"), generated by the reaction of HbO(2) and S-nitrosoglutathione, released NO via a thiol-dependent mechanism involving nucleophilic attack at the nitrosated thiol functionality of SNO-Hb; in the case of glutathione, this process was associated with the formation of a mixed disulfide. In contrast, multinitrosated hemoglobin species released NO and relaxed vascular smooth muscle by a thiol-independent mechanism. HbO(2) scavenged potently NO released from SNO-Hb and inhibited its vasorelaxant properties. These data show that the predominant vasoactive species released from SNO-Hb is NO, with HNO a putative intermediate; the presence of a low molecular weight thiol is a prerequisite for this process. Such observations have important implications for the generation, metabolic fate, and biological activity of S-nitrosothiols.  相似文献   

12.
A spectrophotometric method has been developed that uses extracellular hemoglobin (Hb) to trap nitric oxide (NO) released during denitrification as nitrosyl hemoglobin (HbNO). The rate of complexation of NO with Hb is about at the diffusion controlled limit for protein molecules and the product, HbNO, is essentially stable. Hb was added to an anaerobic bacterial suspension and denitrification was initiated with either KNO2 or KNO3. HbNO formation was observed for six species of denitrifying bacteria and showed isosbestic points at 544, 568, and 586 nm. Cellular NO production, presumably by nitrite reductase, was kinetically distinct from the much slower chemical reaction of Hb with KNO2 to form methemoglobin and HbNO. The rate of HbNO formation was proportional to cell density, essentially independent of pH from 6.8 to 7.4, nearly zero order in [Hb] and, at least with Paracoccus denitrificans, strongly inhibited by rotenone and antimycin A. The Cu chelator, diethyldithiocarbamate, had no effect on HbNO formation by Pa. denitrificans, but abolished that by Achromobacter cycloclastes which uses a Cu-containing nitrite reductase known to be inactivated by the chelator. HbNO formation did not occur with non-denitrifying bacteria. The stoichiometry at high [Hb] for conversion of Hb to HbNO was 1.3-1.8 KNO2 per Hb for Pa. denitrificans, Pseudomonas aeruginosa, and A. cycloclastes and about 3.4 for Pseudomonas stutzeri. The former range of values corresponds to a partition of about 2 N atoms in 3 toward trapping and 1 in 3 toward reduction on the pathway to N2. Nitrogen not trapped appeared largely as N2O in presence of acetylene. The results are consistent with a model in which NO is a freely diffusible intermediate between nitrite and N2O, providing that nitric oxide reductase is or nearly is a diffusion controlled enzyme.  相似文献   

13.
The mechanisms of formation of S-nitrosothiols under physiological conditions and, in particular, of generation of SNO-Hb (the hemoglobin form in which the cysteine residues beta93 are S-nitrosated) are still not completely understood. In this paper, we investigated whether, in the presence of O2, NO* is more efficient to nitrosate protein-bound thiols such as Cysbeta93 or low molecular weight thiols such as glutathione. Our results show that when substoichiometric amounts of NO* are mixed slowly with the protein solution, NO*, O2, and possibly NO2* and/or N2O3 accumulate in hydrophobic pockets of hemoglobin. Since the environment of the cysteine residue beta93 is rather hydrophobic, these conditions facilitate SNO-Hb production. Moreover, we show that S-nitrosation mediated by reaction of NO* with the iron(III) forms of Hb or Mb is significantly more effective when it can take place intramolecularly, as in metHb. Intermolecular reactions lead to lower S-nitrosothiol yields because of the concurring hydrolysis to nitrite.  相似文献   

14.
P P Moh  F G Fiamingo  J O Alben 《Biochemistry》1987,26(19):6243-6249
The SH vibrational absorption of cysteine F9(beta-93) in concentrated aqueous solutions of native liganded hemoglobin (human HbA, horse, and bovine) has been observed by use of Fourier transform infrared spectroscopy. The pattern of beta-93 SH absorption intensity is ligand dependent. In bovine hemoglobin derivatives the SH absorption intensity pattern is (carbonmonoxy)hemoglobin (HbCO) greater than oxyhemoglobin (HbO2) = cyanomethemoglobin (HbCN) much greater than aquomethemoglobin (metHb) and deoxyhemoglobin (deoxyHb). In horse and human hemoglobin derivatives the pattern is HbCO greater than or equal to HbO2 greater than HbCN greater than metHb. The bovine metHb beta-93 SH shows a much lower absorptivity than that of horse or human metHb, and thus it has a different local tertiary equilibrium conformation than does horse or human hemoglobin. X-ray diffraction studies have shown the beta-93 SH in carbon monoxide or oxygen bound hemoglobin to be situated within a nonpolar pocket between the F, G, and H helices. The higher than usual SH absorption frequency (2592 cm-1) that we observe implies there is no hydrogen bonding for this thiol group while situated within this nonpolar pocket. A similar beta-93 SH absorption has been observed in the beta-chain tetramer (thalassemic hemoglobin H in vivo). The beta-112 SH stretching band, previously observed in the alpha 2 beta 2 tetramer, was observed for the first time in the beta-chain tetramer. A band at 2610 cm-1 that is not due to SH was resolved and found to be ligand dependent.  相似文献   

15.
Nagababu E  Rifkind JM 《Biochemistry》2000,39(40):12503-12511
The reaction of Fe(II) hemoglobin (Hb) but not Fe(III) hemoglobin (metHb) with hydrogen peroxide results in degradation of the heme moiety. The observation that heme degradation was inhibited by compounds, which react with ferrylHb such as sodium sulfide, and peroxidase substrates (ABTS and o-dianisidine), demonstrates that ferrylHb formation is required for heme degradation. A reaction involving hydrogen peroxide and ferrylHb was demonstrated by the finding that heme degradation was inihibited by the addition of catalase which removed hydrogen peroxide even after the maximal level of ferrylHb was reached. The reaction of hydrogen peroxide with ferrylHb to produce heme degradation products was shown by electron paramagnetic resonance to involve the one-electron oxidation of hydrogen peroxide to the oxygen free radical, superoxide. The inhibition by sodium sulfide of both superoxide production and the formation of fluorescent heme degradation products links superoxide production with heme degradation. The inability to produce heme degradation products by the reaction of metHb with hydrogen peroxide was explained by the fact that hydrogen peroxide reacting with oxoferrylHb undergoes a two-electron oxidation, producing oxygen instead of superoxide. This reaction does not produce heme degradation, but is responsible for the catalytic removal of hydrogen peroxide. The rapid consumption of hydrogen peroxide as a result of the metHb formed as an intermediate during the reaction of reduced hemoglobin with hydrogen peroxide was shown to limit the extent of heme degradation.  相似文献   

16.
The reaction between hemoglobin (Hb) and NO* has been investigated thoroughly in recent years, but its mechanism is still a matter of substantial controversy. We have carried out a systematic study of the influence of the following factors on the yield of S-nitrosohemoglobin (SNO-Hb) generated from the reaction of NO* with oxy-, deoxy-, and metHb: 1) the volumetric ratio of the protein and the NO* solutions; 2) the rate of addition of the NO* solution to the protein solution; 3) the amount of NO* added; and 4) the concentration of the phosphate buffer. Our results suggest that the highest SNO-Hb yields are mostly obtained by very slow addition of substoichiometric amounts of NO* from a diluted solution. Possible pathways of SNO-Hb formation from the reaction of NO* with oxy-, deoxy-, and metHb are described. Our data strongly suggest that, because of mixing artifacts, care should be taken to use results from in vitro experiments to draw conclusion on the mechanism of the reaction in vivo.  相似文献   

17.
This review is concerned mainly with the three redox-related, but chemically distinct, species NO-, NO. and NO+, with greatest emphasis being placed on the chemistry and biology of the nitroxyl ion. Biochemical routes for the formation of nitroxyl ion and methods for showing the intermediacy of this species are discussed, together with chemical methods for generating nitroxyl ion in solution. Reactions of nitroxyl ion with NO., thiols, iron centres in haem and with dioxygen are reviewed The significance of the reaction between NO- and dioxygen as a source of peroxynitrite is assessed, and attention drawn to the possible significance of the spin state of the nitroxyl ion in this context. The biological significance of nitrosation and the importance of S-nitrosothiols and certain metal nitrosyl complexes as carriers of NO+ at physiological pH is stressed. Some features in the chemistry of peroxynitrite are noted.  相似文献   

18.
Nagababu E  Ramasamy S  Rifkind JM 《Biochemistry》2007,46(41):11650-11659
The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.  相似文献   

19.
Creatine kinase is reversibly inhibited by incubation with S-nitrosothiols. Loss of enzyme activity is associated with the depletion of 5,5'-dithiobis (2-nitrobenzoic acid)-accessible thiol groups, and is not due to nitric oxide release from RSNO. Full enzymatic activity and protein thiol content are restored by incubation of the S-nitrosothiol-modified protein with glutathione. S-nitroso-N-acetylpenicillamine, which contains a more sterically hindered S-nitroso group than S-nitrosoglutathione, predominantly modifies the protein thiol to an S-nitrosothiol via a transnitrosation reaction. In contrast, S-nitrosoglutathione modifies creatine kinase predominantly by S-thiolation. Both S-nitroso-N-acetylpenicillamine and S-nitrosoglutathione modify bovine serum albumin to an S-nitroso derivative. This indicates that S-thiolation and S-nitrosation are both relevant reactions for S-nitrosothiols, and the relative importance of these reactions in biological systems depends on both the environment of the protein thiol and on the chemical nature of the S-nitrosothiol.  相似文献   

20.
Methemoglobin (MetHb), oxyhemoglobin (oxyHb), metmyoglobin (metMb), and oxymyoglobin (oxyMb) catalyze formation of the 7-carboxyheptyl and pentyl radicals from 13-hydroperoxy-9,11-octadecadienoic acid. The relative HPLC-ESR peak height of the pentyl radical to the 7-carboxyheptyl radical was found to depend on the oxygen concentration in the reaction mixture. Under aerobic conditions, the 7-carboxyheptyl radical was predominant for the reaction mixture with ferrous ions (or cytochrome c, metHb, or metMb). On the other hand, under anaerobic conditions, the pentyl radical was predominant for the reaction mixture with ferrous ions (or cytochrome c), but the 7-carboxyheptyl radical was still predominant for the reaction mixture with metHb (or metMb), suggesting that metHb (or metMb) catalyzes the reaction through a mechanism different from that in the case of ferrous ions (or cytochrome c). In order to explain the above results, a mechanism, in which molecular oxygen is not involved, is proposed for the formation of the 7-carboxyheptyl radical in the reaction mixture of 13-HPODE with metHb (or metMb) under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号