首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium uptake in Escherichia coli K-12.   总被引:5,自引:3,他引:2       下载免费PDF全文
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli.  相似文献   

2.
Cd2+ and Mn2+ accumulation was studied with wild-type Bacillus subtilis 168 and a Cd2+-resistant mutant. After 5 min of incubation in the presence of 0.1 microM 109Cd2+ or 54Mn2+, both strains accumulated comparable amounts of 54Mn2+, while the sensitive cells accumulated three times more 109Cd2+ than the Cd2+-resistant cells did. Both 54Mn2+ and 109Cd2+ uptake, which apparently occur by the same transport system, demonstrated cation specificity; 20 microM Mn2+ or Cd2+ (but not Zn2+) inhibited the uptake of 0.1 microM 109Cd2+ or 54Mn2+. 54Mn2+ and 109Cd2+ uptake was energy dependent and temperature sensitive, but 109Cd2+ uptake in the Cd2+-resistant strain was only partially inhibited by an uncoupler or by a decrease in temperature. 109Cd2+ uptake in the sensitive strain followed Michaelis-Menten kinetics with a Km of 1.8 microM Cd2+ and a Vmax of 1.5 mumol/min X g (dry weight); 109Cd2+ uptake in the Cd2+-resistant strain was not saturable. The apparent Km value for the saturable component of 109Cd2+ uptake by the Cd2+-resistant strain was very similar to that of the sensitive strain, but the Vmax was 25 times lower than the Vmax for the sensitive strain. The Km and Vmax for 54Mn2+ uptake by both strains were very similar. Cd2+ inhibition of 54Mn2+ uptake had an apparent Ki of 3.4 and 21.5 microM Cd2+ for the sensitive and Cd2+-resistant strains, respectively. Mn2+ had an apparent Ki of 1.2 microM Mn2+ for inhibition of 109Cd2+ uptake by the sensitive strain, but the Cd2+-resistant strain had no defined Ki value for inhibition of Cd2+ uptake by Mn2+.  相似文献   

3.
Acquisition of manganous ions by mutans group streptococci.   总被引:2,自引:1,他引:1       下载免费PDF全文
The cariogenic bacteria Streptococcus sobrinus and S. cricetus were shown to have an absolute requirement for manganous ion in order to bind glucans or to adhere to glass in the presence of sucrose. The bacteria possessed a reasonably high affinity transport system for 54Mn2+, yielding a Km of about 12 microM. The Vmax for uptake of 54Mn2+ in S. sobrinus was increased when the bacteria were grown in Mn-depleted medium, but the Km remained the same. There was no evidence for two Mn2+ uptake systems, commonly observed for many bacteria. Ions such as Ca2+, Co2+, Co3+, Cu2+, Fe2+, Fe3+, Hg2+, Mg2+, Ni2+, and Zn2+ did not inhibit the uptake of 54Mn2+ by the bacteria, although Cd2+ was a potent inhibitor. Fractionation experiments showed that manganese was distributed in protoplasts (67%) and in the cell wall (33%). Approximately 80% of the 54Mn2+ in S. sobrinus was rapidly exchangeable with nonradioactive Mn2+. Electron spin resonance experiments showed that all of the manganese was bound or restricted in mobility. Proton motive force-dissipating agents increased the acquisition of 54Mn2+ by the streptococci, probably because the wall became more negatively charged when the cell could no longer produce protons.  相似文献   

4.
Uptake of Cd and Zn by intact seedlings of two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens was characterized using radioactive tracers. Uptake of Cd and Zn at 2 degrees C was assumed to represent mainly apoplastic binding in the roots, whereas the difference in uptake between 22 degrees C and 2 degrees C represented metabolically dependent influx. There was no significant difference between the two ecotypes in the apoplastic binding of Cd or Zn. Metabolically dependent uptake of Cd was 4.5-fold higher in the high Cd-accumulating ecotype, Ganges, than in the low Cd-accumulating ecotype, Prayon. By contrast, there was only a 1.5-fold difference in the Zn uptake between the two ecotypes. For the Ganges ecotype, Cd uptake could be described by Michaelis-Menten kinetics with a V(max) of 143 nmol g(-1) root FW h(-1) and a K(m) of 0.45 microM. Uptake of Cd by the Ganges ecotype was not inhibited by La, Zn, Cu, Co, Mn, Ni or Fe(II), and neither by increasing the Ca concentration. By contrast, addition of La, Zn or Mn, or increasing the Ca concentration in the uptake solution decreased Cd uptake by Prayon. Uptake of Ca was larger in Prayon than in Ganges. The results suggest that Cd uptake by the low Cd-accumulating ecotype (Prayon) may be mediated partly via Ca channels or transporters for Zn and Mn. By contrast, there may exist a highly selective Cd transport system in the root cell membranes of the high Cd-accumulating ecotype (Ganges) of T. caerulescens.  相似文献   

5.
The applicability of the hard-and-soft principle of acids and bases in predicting metal adsorption characteristics in a biological context was investigated for metabolism-independent uptake of the metal ions Sr2+, Mn2+, Zn2+, Cu2+, Cd2+, and Tl+ by Saccharomyces cerevisiae. Metal adsorption increased with external metal concentration (5 to 50 microM), although some saturation of uptake of the harder ions examined, Sr2+, Mn2+, and Zn2+, was evident at the higher metal concentrations. Cation displacement experiments indicated that, with the exception of Tl+, relative covalent bonding (H+ displacement) of the metals was greater at low metal concentrations, while weaker electrostatic interactions (Mg2+ plus Ca2+ displacement) became increasingly important at higher concentrations. These results were correlated with curved Scatchard and reciprocal Langmuir plots of metal uptake data. Saturation of covalent binding sites was most marked for the hard metals, and consequently, although no relationship between metal hardness and ionic/covalent bonding ratios was evident at 10 microM metal, at 50 microM the ratio was generally higher for harder metals. Increasing inhibition of metal uptake at increasing external anion concentrations was partially attributed to the formation of metal-anion complexes. Inhibitory effects of the hard anion SO42(-) were most marked for uptake of the hard metals Sr2+ and Mn2+, whereas greater relative effects on adsorption of the softer cations Cu2+ and Cd2+ were correlated with complexation by the soft anion S2O32(-). Inhibition of uptake of the borderline metal Zn2+ by SO42(-) and that by S2O32(-) were approximately equal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Manganese Uptake and Efflux in Cultured Rat Astrocytes   总被引:7,自引:0,他引:7  
Astrocytes play a central role in manganese (Mn) regulation in the CNS. Using primary astrocyte cultures from neonatal rat brains, these studies demonstrate a specific high-affinity transport system for Mn2+. Saturation kinetics are clearly indicated by both 1/v versus 1/s plots (Km = 0.30 +/- 0.03 microM; Vmax = 0.30 +/- 0.02 nmol/mg of protein/min) and plots of v versus [s]. Several divalent cations (Co2+, Zn2+, and Pb2+) failed to inhibit the initial rate of 54Mn2+ uptake. In contrast, extracellular Ca2+ at 10 microM decreased 54Mn2+ uptake. Exchange with extracellular Mn2+ was not obligatory for the efflux of 54Mn2+ into extracellular medium because efflux occurred into Mn(2+)-free extracellular medium, but efflux of 54Mn2+ was enhanced when astrocytes were equilibrated in the presence of unlabeled Mn2+. Efflux of 54Mn2+ was biphasic with both a rapid and a slow component. Efflux was most rapid during the first 10 min of incubation, with 27.5 +/- 2.2% of 54Mn2+ transported extracellularly, and 37.2 +/- 1.2% of preloaded 54Mn2+ was retained by the astrocytes at 120 min. These studies show, for the first time, that mammalian astrocytes can transport Mn via a specific transport system.  相似文献   

7.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

8.
The effects of various divalent cations on the Ca2+ uptake by microsomes from bovine aortic smooth muscle were studied. High concentrations (1 mM) of Co2+, Zn2+, Mn2+, Fe2+, and Ni2+ inhibited neither the Ca2+ uptake by the microsomes nor the formation of the phosphorylated intermediate (E approximately P) of the Ca2+,Mg2+-ATPase of the microsomes. The cadmium ion, however, inhibited both the Ca2+ uptake and the E approximately P formation by the microsomes. Dixon plot analysis indicated Cd2+ inhibited (Ki = 135 microM) the Ca2+ dependent E approximately P formation in a non-competitive manner. The inhibitory effect of Cd2+ was lessened by cysteine or dithiothreitol. The strontium ion inhibited the Ca2+ uptake competitively, while the E approximately P formation increased on the addition of Sr2+ at low Ca2+ concentrations. At a low Ca2+ concentration (1 microM), Sr2+ was taken up by the aortic microsomes in the presence of 1 mM ATP. It is thus suggested that Sr2+ replaces Ca2+ at the Ca2+ binding site on the ATPase.  相似文献   

9.
NRAMPs (natural resistance-associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+-stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ ( approximately 0.1 microM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 microM, Co2+ with a Ki of 20 microM and Fe2+ with a Ki that decreased from 100 microM at pH 7. 6 to 10 microM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 microM, while Cd2+ was a potent inhibitor with a Ki of about 1 microM. E. coli MntH had a similar inhibition profile, except that Kis were three- to 10-fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH:lacZ constructs were strongly induced by hydrogen peroxide, weakly induced by EDTA and unresponsive to paraquat, consistent with the presence of Fur and OxyR binding sites in the promoters. Strains overexpressing mntH were more susceptible to growth inhibition by Mn2+ and Cd2+ than wild type, and strains lacking a functional mntH gene were more susceptible to killing by hydrogen peroxide. In S. typhimurium strain SL1344, mntH mutants showed no defect in invasion of or survival in cultured HeLa or RAW264.7 macrophage cells; however, expression of mntH:lacZ was induced severalfold by 3 h after invasion of the macrophages. S. typhimurium mntH mutants showed only a slight attenuation of virulence in BALB/c mice. Thus, the NRAMP Mn2+ transporter MntH and Mn2+ play a role in bacterial response to reactive oxygen species and possibly have a role in pathogenesis.  相似文献   

10.
1. The inflow of Mn2+ across the plasma membranes of isolated hepatocytes was monitored by measuring the quenching of the fluorescence of intracellular quin2, by atomic absorption spectroscopy and by the uptake of 54Mn2+. The inflow of other divalent metal ions was measured using quin2. 2. Under ionic conditions which resembled those present in the cytoplasmic space, Mn2+, Zn2+, Co2+, Ni2+ and Cd2+ each quenched the fluorescence of a solution of Ca2(+)-quin2. 3. The addition of Mn2+, Zn2+, Co2+, Ni2+ or Cd2+ to cells loaded with quin2 caused a time-dependent decrease in the fluorescence of intracellular quin2. Plots of the rate of decrease in fluorescence as a function of the concentration of Mn2+ reached a plateau at 100 microM-Mn2+. 4. The rate of decrease in fluorescence induced by Mn2+ was stimulated by 20% in the presence of vasopressin. The effect of vasopressin was completely inhibited by 200 microM-verapamil. Adrenaline, angiotensin II and glucagon also stimulated the rate of decrease in the fluorescence of intracellular quin2 induced by Mn2+. 5. The rate of decrease in fluorescence induced by Zn2+, Co2+, Ni2+ or Cd2+ was stimulated by between 20 and 190% in the presence of vasopressin or angiotensin II. 6. The rates of uptake of Mn2+ measured by atomic absorption spectroscopy or by using 54Mn2+ were inhibited by about 20% by 1.3 mM-Ca2+o and stimulated by 30% by vasopressin. 7. Plots of Mn2+ uptake, measured by atomic absorption spectroscopy or with 54Mn2+, as a function of the extracellular concentration of Mn2+ were biphasic over the range 0.05-1.0 mM added Mn2+ and did not reach a plateau at 1.0 mM-Mn2+. 8. It is concluded that (i) hepatocytes possess both a basal and a receptor-activated divalent cation inflow system, each of which has a broad specificity for metal ions, and (ii) the receptor-activated divalent cation inflow system is the receptor-operated Ca2+ channel.  相似文献   

11.
Uptake and release of 45Ca by Myxicola axoplasm   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding and release of 45Ca by axoplasm isolated from Myxicola giant axons were examined. Two distinct components of binding were observed, one requiring ATP and one not requiring ATP. The ATP- dependent binding was largely prevented by the addition of mitochondrial inhibitors, whereas the ATP-independent component was unaffected by these inhibitors. The ATP-independent binding accounted for roughly two-thirds of the total 45Ca uptake in solutions containing an ionized [Ca2+] = 0.54 microM and was the major focus of this investigation. This fraction of bound 45Ca was released from the axoplasm at a rate that increased with increasing concentrations of Ca2+ in the incubation fluid. The ions Cd2+ and Mn2+ were also able to increase 45Ca efflux from the sample, but Co2+, Ni2+, Mg2+, and Ba2+ had no effect. The concentration-response curves relating the 45Ca efflux rate coefficients to the concentration of Ca2+, Cd2+, and Mn2+ in the bathing solution were S-shaped. The maximum rate of efflux elicited by one of these divalent ions could not be exceeded by adding a saturating concentration of a second ion. Increasing EGTA concentration in the bath medium from 100 to 200 microM did not increase 45Ca efflux; yet increasing the concentration of the EGTA buffer in the uptake medium from 100 to 200 microM and keeping ionized Ca2+ constant caused more 45Ca to be bound by the axoplasm. These results suggest the existence of high-affinity, ATP-independent binding sites for 45Ca in Myxicola axoplasm that compete favorably with 100 microM EGTA. The 45Ca efflux results are interpreted in terms of endogenous sites that interact with Ca2+, Cd2+, or Mn2+.  相似文献   

12.
Inhibition of glutamate transport is a potential indirect cause of excitotoxic damage by glutamate in the CNS. The mercuric ion, the form in which metallic mercury vapor is believed to exert its neurotoxic action, is a known inhibitor of amino acid transport. This study examines the specificity with which HgCl2 inhibits glutamate transport in mouse cerebral astrocytes by means of comparative measurements of 2-deoxyglucose uptake. Uptake of 2-deoxyglucose is an index of glucose utilization that reflects the function of Na+,K+-ATPase and hexokinase, and is sensitive to Na+ entry. The kinetic parameters, ionic dependence, and substrate specificity of glutamate transport in these astrocyte cultures were consistent with the commonly occurring system designated X-AG. Acute exposure to 0.5 microM HgCl2 inhibited by 50% the initial rate of glutamate transport but did not affect 2-deoxyglucose uptake. Glutamate transport was not detectably inhibited by Al2+, Pb2+, Co2+, Sr2+, Cd2+, or Zn2+ (10 microM as chlorides). The inhibitory action of 0.5 microM HgCl2 on glutamate transport was rapidly reversible. The action of 1-2 microM HgCl2 was progressive when exposures were extended to 1-3 h, and was more slowly reversible. These results suggest that Hg2+ can impair glial glutamate transport reversibly at exposure levels that do not compromise some other vital cell functions.  相似文献   

13.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on deoxyuridine 5′-triphosphatase (dUTPase) in the cytosol of rat liver was investigated. Addition of Ca2+ up to 5.0 μM to the enzyme reaction mixture caused a significant decrease of dUTPase activity, while Zn2+, Cd2+, Co2+, Al3+, Mn2+ and Ni2+ (10 μM) did not have an appreciable effect. The Ca2+-induced decrease of dUTPase activity was reversed by the presence of regucalcin; the effect was complete at 1.0 μM of the protein. Regucalcin had no effect on the basal activity of the enzyme. Meanwhile, the reversible effect of regucalcin on the Ca2+ (10 μM)-induced decrease of dUTPase activity was not altered by the coexistence of Cd2+ or Zn2+ (10 μM). The present data suggest that liver cytosolic dUTPase is uniquely regulated by Ca2+ of various metals, and that the Ca2+ effect is reversed by regucalcin.  相似文献   

14.
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

15.
C L Fu  R J Maier 《Applied microbiology》1991,57(12):3511-3516
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

16.
Binding of 125I-[Nle15]gastrin to albumin purified from porcine serum, from porcine gastric mucosal cytosol, and from bovine serum has been demonstrated by covalent cross-linking and ultracentrifugation. Binding was enhanced in the presence of Zn2+, Ni2+, Cu2+, Co2+, and Cd2+, but not Ca2+, Mg2+, or Mn2+. The best fit to the binding data for bovine serum albumin was obtained with a model assuming two nonequivalent binding sites. The affinity of both sites for gastrin was increased in the presence of 100 microM Zn2+ or Ni2+ ions. The highest association constant observed was 2.3 X 10(5) M-1 in the presence of 100 microM Zn2+ ions. The similarity of the Zn(2+)-dependence of binding for bovine and porcine serum albumins, despite the replacement of His3 by Tyr, suggested that the N-terminal metal ion-binding site was not involved. Although all gastrin affinities were reduced by 50% in the presence of 150 mM NaCl, the Zn(2+)-dependence of binding was retained. We therefore propose that the ternary complex of gastrin, Zn2+ ions, and albumin may play a physiological role in the serum transport of Zn2+ ions and in the uptake of Zn2+ ions from the lumen of the gastrointestinal tract.  相似文献   

17.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

18.
Mediated calcium transport by isolated human fibroblast lysosomes   总被引:1,自引:0,他引:1  
Lysosomes purified by Percoll gradient from normal human fibroblasts (GM0010A) show uptake of Ca2+ in a mediated manner. The uptake is linear over the first 1.5 min and approaches a steady state by 10 min. Uptake is saturable, displaying a Vmax of about 10 pmol/min/unit hexosaminidase at 20 mM Ca2+ (7 nmol/min/mg protein), and a Km of 5.7 mM. Ca2+ uptake increases with increasing extralysosomal pH from 5.0 to 8.5. The Q10 is 1.6, and Ea 8.7 kcal/mol. Uptake of 0.1 mM Ca2+ was inhibited to the extent indicated by 1.0 mM of the following: Cd2+, 100%; Hg2+, 100%; Zn2+, 89%; Mg2+, 77%; Ba2+, 60%; Sr2+, 37%; Fe2+, 20%; Cu2+, 0%. Mono- and trivalent cations had no effect. ATP (1.0 mM) inhibited uptake by 80%, and chloroquine (0.1 mM) inhibited by 60%, as did 1.0 mM L-cystine. Cysteamine, N-ethylmaleimide, and the anions Cl-, SO(2-)4, and acetate had no effect. The calcium ionophore A23187 augmented uptake by 10-fold at 10 microM. Surprisingly, Pb2+ greatly augmented lysosomal Ca2+ uptake in a concentration-dependent manner. Pb2+, however, adversely affected lysosomal latency. Lysosomal calcium uptake was not affected by inositol 1,4,5-triphosphate, and calcium-induced calcium release from lysosomes was not observed. A role for lysosomes in cellular calcium homeostasis has not been previously suggested. This work shows that Ca2+ can be transported into and out of lysosomes and could assist in lysosomal proteolysis. The extent of further lysosomal participation in cellular calcium regulation is unclear.  相似文献   

19.
Cd2+ transport and storage in the chloroplast of Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena gracilis lacks a plant-like vacuole and, when grown in Cd2+-containing medium, 60% of the accumulated Cd2+ is located inside the chloroplast. Hence, the biochemical mechanisms involved in Cd2+ accumulation in chloroplast were examined. Percoll-purified chloroplasts showed a temperature-sensitive uptake of the free 109Cd2+ ion. Kinetics of the uptake initial rate was resolved in two components, one hyperbolic and saturable (Vmax 11 nmol 109Cd2+ min(-1) mg protein (-1), Km 13 microM) and the other, linear and non-saturable. 109Cd2+ uptake was not affected by metabolic inhibitors or illumination. Zn2+ competitively inhibited 109Cd2+ uptake (Ki 8.2 microM); internal Cd2+ slightly inhibited 109Cd2+ uptake. Cadmium was partially and rapidly released from chloroplasts. These data suggested the involvement of a cation diffusion facilitator-like protein. Chloroplasts isolated from cells grown with 50 microM CdCl2 (ZCd50 chloroplasts) showed a 1.6 times increase in the uptake Vmax, whereas the Km and the non-saturable component did not change. In addition, Cd2+ retention in chloroplasts correlated with the amount of internal sulfur compounds. ZCd50 chloroplasts, which contained 4.4 times more thiol-compounds and sulfide than control chloroplasts, retained six times more Cd2+. The Cd2+ storage-inactivation mechanism was specific for Cd2+, since Zn2+ and Fe3+ were not preferentially accumulated into chloroplasts.  相似文献   

20.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号