首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Genetic mapping of the genes (puu) that encode the enzymes catalysing degradation of purines in Pseudomonas aeruginosa strain PAO has been carried out. Mutants that are deficient in adenine deaminase (puuA), guanine deaminase (puuB), xanthine dehydrogenase (puuC), uricase (puuD), allantoinase (puuE), and/or allantoicase (puuF) were isolated and used for the genetic study. Conjugation by FP5 factor and generalized transduction by phage G101 gave the following map locations of these six genes on the chromosome: hisI-puuB-hisII; trpA,B-puuA-ilv202; met9011-catA1-tyu-nar9011-(puuC, puuD, puuE)-puuF. A close linkage among the puuC, puuD and puuE was demonstrated by the transduction.  相似文献   

2.
A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii and wheat. At least two unrelated resistance-gene analogs (RGAs) mapped close to known leaf rust resistance genes (Lr21 and Lr40) located distal to seed storage protein genes on chromosome 1DS. One of the two RGA clones, which was previously shown to be part of a candidate gene for stripe rust resistance (Yr10) located within the homoeologous region on 1BS, identified at least three gene family members on chromosome 1DS of Ae. tauschii. One of the gene members co-segregated with the leaf rust resistance genes, Lr21 and Lr40, in Ae. tauschii and wheat segregating families. Hence, a RGA clone derived from a candidate gene for stripe rust resistance located on chromosome 1BS detected candidate genes for leaf rust resistance located in the corresponding region on 1DS of wheat. Received: 10 January 2000 / Accepted: 25 March 2000  相似文献   

3.
We selected the common shrew (Sorex araneus) to generate the first insectivore gene map. Shrew-Chinese hamster and shrew-mouse somatic cell hybrid cells were constructed. When the 119 shrew-rodent clones were characterized, only shrew chromosomes were found to have segregated. A panel of hybrid clones was selected for gene assignment. The genes for hypoxanthine phosphoribosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), and malate dehydrogenase 1 (MDH1) were assigned to shrew Chromosome (Chr) de [which is the product of a tandem fusion between the original mammalian X Chromosome (Chr) and an autosome], the genes for adenosine deaminase (ADA) and 6-phosphogluconate dehydrogenase (PGD) to Chromosome jl, the gene for thymidine kinase (TK) to Chromosome hn, and the gene for lactate dehydrogenase (LDHA) to chromosome ik. Further studies are in progress.  相似文献   

4.
Summary The physical localization of sequences homologous to three cloned genes was determined by in situ hybridization to metaphase chromosomes. Previous work had assigned the skeletal myosin heavy chain gene cluster (Myh), the functional locus for the cellular tumor antigen p53 (Trp53-1), and the cellular homologue of the viral erb-B oncogene (Erbb) toMus musculus chromosome 11 (MMU11). Our results provide regional assignments ofMyh andTrp53-1 to chromosome bands B2C, and ofErbb to bands A1A4. Taken together with in situ mapping of three other loci on MMU 11 (Hox-2 homeobox-containing gene cluster, theSparc protein, and theColla-1 collagen gene), which have been reported elsewhere, these data allowed us to construct a physical map of MMU11 and to compare it with the linkage map of this chromosome. The map positions of the homologous genes on human chromosomes suggest evolutionary relationships of distinct regions of MMU11 with six different human chromosome arms: 1p, 5q, 7p, 16p, 17p, and 17q. The delineation of conserved chromosome regions has important implications for the understanding of karyotype evolution in mammalian species and for the development of animal models of human genetic diseases.  相似文献   

5.
Summary A cytogenetic map of the whole 1 R chromosome of rye has been made, with distances between adjacent markers shorter than 50% recombination. Included in the map are isozyme loci Gpi-R1, Mdh-R1 and Pgd2, the telomere C-bands of the short arm (ts1) and the long arm (tl1), two interstitial C-bands in the short arm proximal to the nuclear organizing region (NOR) (is1) and in the middle of the long arm (il1), respectively, and translocation T273W (Wageningen tester set). By means of electron microscope analysis of spread pachytene synaptonemal complexes, the breakpoint of this translocation was physically mapped in the short arm of 1R, proximal to NOR, and in the long arm of 5R (contrary to previous assumptions). The data indicated the marker order: ts1 — Gpi-R1 — is1 — T273W/Mdh-R1 — il1 — Pgd2 — tl1. A comparison between genetic and physical maps revealed that recombination is mainly restricted to the distal regions of both arms. For the translocation T273W, in heterozygotes no recombinants were observed between the translocation breakpoint and its two adjacently located markers (is1 and Mdh-R1), but recombination was not reduced in the distal regions of the chromosome. The segregations of several other isozyme and C-band markers also analyzed in the investigation presented here were consistent with observations of earlier authors concerning chromosome asignment and linkage relationships.  相似文献   

6.
7.
Fine mapping of the human pentraxin gene region on chromosome 1q23   总被引:1,自引:1,他引:0  
 The 1q21 to 25 region of human chromosome 1 contains genes which encode proteins with immune- and inflammation-associated functions. These include the pentraxin genes, for C-reactive protein (CRP), serum amyloid P (SAP) protein (APCS), and a CRP pseudogene (CRPP1). The region of chromosome 1 containing this cluster is syntenic with distal mouse chromosome 1. We constructed an approximately 1.4 megabase yeast artificial chromosome (YAC) contig with the pentraxin genes at its core. This four-YAC contig includes other genes with immune functions including the FCER1A gene, which encodes the α-subunit of the IgE high-affinity Fc receptor and the IFI-16 gene, an interferon-γ-induced gene. In addition, it contains the histone H3F2 and H4F2 genes and the gene for erythroid α-spectrin (SPTA1). The gene order is cen.-SPTA1-H4F2-H3F2-IFI-16-CRP-CRPP1-APCS-FCER1A- tel. The contig thus consists of a cluster of genes whose products either have immunological importance, bind DNA, or both. Received: 13 December 1995 / 6 February 1996  相似文献   

8.
9.
R. A. Voelker  C. H. Langley 《Genetica》1978,49(2-3):233-236
Dipeptidase A (Dip-A), a new peptidase locus in Drosophila melanogaster, is located on the second chromosome at map position 55.2 and in the 41A-B; 42A2-3 interval in the salivary gland chromosomes. Three alleles are reported. In the Carpenter, North Carolina population the allele frequencies are: Dip-A 6 (fastest)=0.064; Dip-A 4 (intermediate)=0.920; and Dip-A 2 (slowest)=0.015.  相似文献   

10.
A map of rat Chromosome (Chr) 10 was generated from 21 markers, mostly of conserved structural genes, by linkage analysis and fluorescence in situ hybridization. The study emphasizes the proximal third of the chromosome which, until now, has been relatively devoid of markers. Based on comparative analysis, our data suggest that genes on rat Chr 10 are conserved on mouse Chr 11, 16, 17 and human Chr 16, 5, and 17. Received: 22 November 1995 / Accepted: 29 January 1996  相似文献   

11.
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.  相似文献   

12.
The recombination activating genes RAG-1 and RAG-2 are adjacent genes that act synergistically to activate variable-diversity-joining (V(D)J) recombination. Southern analysis of hybrid cell lines derived from patients with the Wilms tumor-aniridia-genitourinary defects-mental retardation (WAGR) syndrome and from mutagenized cell hybrids selected for deletions in chromosome 11 has allowed us to map the chromosomal location of the human RAG locus. The RAG locus defines a new interval of human chromosome 11p, but is not associated with any genetically mapped human disease. Guided by the chromosomal localization of the human recombination activating genes, we have also mapped the location of the mouse Rag locus.  相似文献   

13.
Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR‐Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map‐based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR‐Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding.  相似文献   

14.
The locus responsible for the appearance of muscular hypertrophy (mh) in double muscled cattle breeds has recently been shown to encode a secreted growth factor designated myostatin (MSTN). This conclusion was based in part on the placement of MSTN in the interval to which mh had been mapped on bovine chromosome 2 (BTA2). During the mapping phase of the study, numerous yeast artificial chromosome (YAC) clones were isolated that contained genetic markers closely linked to mh. Other YACs and cosmids were identified that contained genes selected from human chromosome 2q (HSA2q), with the goal of defining the position of breakpoints in conserved synteny between the bovine and human comparative maps, thereby permitting accurate selection of positional candidate genes. An efficient subcloning procedure was developed to obtain microsatellites (ms) from YAC clones, to increase the number of informative meioses in herds segregating for mh. The same procedure was used to place the human orthologues of engrailed-1 (EN1), interleukin 1 beta (IL1B), and paired-box-containing 8 (PAX8) genes on the cattle map to further define the positions of breakpoints in conserved synteny and gene order. Twenty-three of 28 ms identified from YAC subclone libraries were informative in the mapping families. Seven mapped to the centromeric end of BTA2, which contains the mh locus, improving marker density and informativeness. The two MSTN and four EN1 gene-associated ms markers developed from YACs, map to positions 1·5 and 61·6 cm in the BTA2 linkage group, respectively. In addition, ms markers developed from cosmids containing either IL1B or PAX8, map to positions 56·6 and 56·9 cm in the BTA11 linkage group, respectively. These linkage data confirm the location and orientation of orthologous segments of HSA2q that were previously indistinguishable on the bovine map, and demonstrates the presence of microrearrangements of gene order (segments <10 cm ) and conserved synteny between the human and bovine genomes.  相似文献   

15.
The capacity to tiller is a key factor that determines plant architecture. Using molecular markers, a single major gene reducing tiller number, formally named the tiller inhibition gene (tin), was mapped to the short arm of chromosome 1A in wheat. We identified a tightly linked microsatellite marker (Xgwm136) that may be useful in future marker-assisted selection. The tin gene was mapped to the distal deletion bin of chromosome 1AS (FLM value 0.86) and wheat ESTs which were previously mapped to the same deletion bin were used to identify 18 closely related sequences in the syntenic region of rice chromosome 5. For a subset of wheat ESTs that detected flanking markers for tin, we identified closely related sequences within the most distal 300 kb of rice chromosome 5S. The synteny between the distal chromosome ends of wheat 1AS and rice 5S appeared to be disrupted at the hairy glume locus and seed storage protein loci. We compared map position of tin with other reduced tillering mutants characterised in other cereals to identify possible orthologous genes.  相似文献   

16.
We are interested in the collagen gene superfamily and its involvement in hereditary diseases of the human and domestic dog. Presented here is radiation hybrid mapping of the type I and type IV collagen gene subfamilies on the most recent version of the canine map. The col1A1 gene was mapped to chromosome 9, col1A2 was mapped to chromosome 14, col4A1 and col4A2 were mapped to chromosome 22 and col4A3 and col4A4 were mapped to chromosome 25. The col4A5 and col4A6 genes, while linked to one another, are not linked in the present version of the canine map but likely are present on the X chromosome. These data provide an insight into the molecular evolution of these subfamilies and increase the number of mapped genes in discrete regions of the canine genome. J.K. Lowe and R. Guyon contributed equally to this work Sequences determined during the course of this work have been deposited in GenBank. Accession numbers are AF291995 (col1A1) and AF291996 (col1A2)  相似文献   

17.
Males are homogametic (ZZ) and females are heterogametic (WZ) with respect to the sex chromosomes in many species of butterflies and moths (insect order Lepidoptera). Genes on the Z chromosome influence traits involved in larval development, environmental adaptation, and reproductive isolation. To facilitate the investigation of these traits across Lepidoptera, we developed 43 degenerate primer pairs to PCR amplify orthologs of 43 Bombyx mori Z chromosome-linked genes. Of the 34 orthologs that amplified by PCR in Ostrinia nubilalis, 6 co-segregated with the Z chromosome anchor markers kettin (ket) and lactate dehydrogenase (ldh), and produced a consensus genetic linkage map of ~89 cM in combination with 5 AFLP markers. The O. nubilalis and B. mori Z chromosomes are comparatively co-linear, although potential gene inversions alter terminal gene orders and a translocation event disrupted synteny at one chromosome end. Compared to B. mori orthologs, O. nubilalis Z chromosome-linked genes showed conservation of tissue-specific and growth-stage-specific expression, although some genes exhibited species-specific expression across developmental stages or tissues. The O. nubilalis Z chromosome linkage map provides new tools for isolating quantitative trait loci (QTL) involved in sex-linked traits that drive speciation and it exposes genome rearrangements as a possible mechanism for differential gene regulation in Lepidoptera.  相似文献   

18.
The mapping of phytochrome genes and photomorphogenic mutants of tomato   总被引:6,自引:0,他引:6  
The map positions of five previously described phytochrome genes have been determined in tomato (Lycopersicon esculentum Mill.) The position of the yg-2 gene on chromosome 12 has been confirmed and the classical map revised. The position of the phytochrome A (phy A)-deficient fri mutants has been refined by revising the classical map of chromosome 10. The position of the PhyA gene is indistinguishable from that of the fri locus. The putative phyB1-deficient tri mutants were mapped by classical and RFLP analysis to chromosome 1. The PhyB1 gene, as predicted, was located at the same position. Several mutants with the high pigment (hp) phenotype, which exaggerates phytochrome responses, have been reported. Allelism tests confirmed that the hp-2 mutant is not allelic to other previously described hp (proposed here to be called hp-1) mutants and a second stronger hp-2 allele (hp-2 j ) was identified. The hp-2 gene was mapped to the classical, as well as the RFLP, map of chromosome 1. Received: 24 May 1996 / Accepted: 14 June 1996  相似文献   

19.
20.
A genomic clone for an alcohol dehydrogenase (Adh) gene has been isolated fromPetunia hybrida cv. V30 by screening aPetunia genomic library with a maizeAdh1 probe. A combination of RFLP and allozyme segregation data failed to demonstrate which of twoAdh loci, both of which map to chromosome 4, was the source of the cloned gene. The product of the cloned genes has been identified unequivocally by a transient expression assay inPetunia protoplasts. We have designated this genePetunia Adh1. The expression of this gene is tightly regulated in the developing anther, where its gene product is the predominant ADH isozyme. It is anaerobically inducible in roots, stems and leaves of seedlings. The induction of enzyme activity is correlated with induction ofAdh1 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号