首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Efficient expression in Escherichia coli (E. coli) of the human interferon-beta gene (IFN-beta) gene and of a chemically synthesized IFN-beta gene variant (506 base pairs; synIFN-beta) adapted to the E. coli codon usage, both fused to the E. coli atpE ribosome-binding site, is controlled either by primary sequence or by mRNA secondary-structure in the translational initiation region. High level expression of the natural human atpE/IFN-beta gene fusion is governed by the nucleotide composition preceding the initiator codon AUG. A single U----C exchange in the -2 or -1 position preceding the initiator codon AUG reduces the translational efficiency from 18% of total cellular protein to only 8% or 4%, respectively, while both U----C substitutions reduce IFN-beta expression below 1%. These sequence alterations interfere with efficient ribosome binding as revealed by toeprinting. They provide further evidence for the influence of the anticodon-flanking regions of tRNA(fMet) upon the initiation rate of translation. In contrast, translation of the synthetic variant atpE/synIFN-beta gene fusion is controlled by a moderately stable stem-loop structure (delta G = -4 kcal/mol; 37 degrees C) located within the coding region and overlapping the 30 S ribosomal subunit attachment site. That the stability of the hairpin interferes with the initiation of translation is inferred from site-directed mutagenesis and toeprint analyses. mRNA half-life in these variants is positively correlated with the rate of translation and involves two major endonucleolytic cleavage site 5'-upstream of the Shine-Dalgarno region.  相似文献   

2.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

3.
Translation efficiency contributes several orders of magnitude difference in the overall yield of exogenous gene expression in bacteria. In diverse bacteria, the translation initiation site, whose sequence is the primary determinant of the translation performance, is comprised of the start codon and the Shine–Dalgarno box located upstream. Here, we have examined how the sequence of a spacer between these main components of the translation initiation site contributes to the yield of synthesized protein. We have created a library of reporter constructs with the randomized spacer region, performed fluorescently activated cell sorting and applied next-generation sequencing analysis (the FlowSeq protocol). As a result, we have identified sequence motifs for the spacer region between the Shine–Dalgarno box and AUG start codon that may modulate the translation efficiency in a 100-fold range.  相似文献   

4.
5.
K Schneider  C F Beck 《Gene》1988,74(2):559-563
  相似文献   

6.
7.
Nagase T  Nishio SY  Itoh T 《Plasmid》2007,58(3):249-260
Translation initiation of mRNA encoding the Rep protein of the ColE2 plasmid required for initiation of plasmid DNA replication is fairly efficient in Escherichia coli cells despite the absence of a canonical Shine-Dalgarno sequence. To define sequences and structural elements responsible for translation efficiency of the Rep mRNA, a series of rep-lacZalpha translational fusions bearing various mutations in the region encoding the leader region of the Rep mRNA was generated and tested for the translation activity by measuring the beta-galactosidase activity. We showed that the region rich in A and U between the stem-loop II structure and GA cluster sequence, formation of the stem-loop II structure, but not its sequence, and the region between the GA cluster sequence and initiation codon are important along with the GA cluster sequence for efficient translation of the Rep protein. The existence of these important regions in the leader region of the Rep mRNA may explain the mechanism of inhibition of the Rep protein translation by an antisense RNA (RNAI), which is complementary to the leader region.  相似文献   

8.
9.
10.
The high-affinity histidine permease of Salmonella typhimurium is encoded by a four-gene operon containing a large intercistronic region located between the first gene (hisJ) and the three distal genes (hisQ, hisM, hisP). The level of expression of hisJ is 30-fold greater than that of hisP. In order to investigate the role of the intercistronic region in intra-operonic control of gene expression, we have isolated MudII-mediated lacZ gene fusions to hisQ, hisM and hisP. We have used these fusions to isolate and analyse mutants that have altered levels of expression of the hisQ gene, the first gene downstream from the intercistronic region. The results indicate that intra-operonic regulation is due to a combination of factors including efficiency of translational initiation, mRNA degradation, and retroregulation of hisJ expression. They also suggest that the REP (Repetitive Extragenic Palindromic) sequences, which are located in the hisJ-hisQ intercistronic region, may interfere with translation of the hisQ gene and affect upstream messenger RNA stability by protecting it from 3' to 5' nuclease degradation (in agreement with data presented by Newbury et al., 1987).  相似文献   

11.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

12.
13.
14.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

15.
The mRNA for CspA, a major cold shock protein in Escherichia coli, contains an unusually long (159 bases) 5' untranslated region (5'-UTR), and its stability has been shown to play a major role in cold shock induction of CspA. The 5'-UTR of the cspA mRNA has a negative effect on its expression at 37 degrees C but has a positive effect upon cold shock. In this report, a series of cspA-lacZ fusions having a 26- to 32-base deletion in the 5'-UTR were constructed to examine the roles of specific regions within the 5'-UTR in cspA expression. It was found that none of the deletion mutations had significant effects on the stability of mRNA at both 37 and 15 degrees C. However, two mutations (Delta56-86 and Delta86-117) caused a substantial increase of beta-galactosidase activity at 37 degrees C, indicating that the deleted regions contain a negative cis element(s) for translation. A mutation (Delta2-27) deleting the highly conserved cold box sequence had little effect on cold shock induction of beta-galactosidase. Interestingly, three mutations (Delta28-55, Delta86-117, and Delta118-143) caused poor cold shock induction of beta-galactosidase. In particular, the Delta118-143 mutation reduced the translation efficiency of the cspA mRNA to less than 10% of that of the wild-type construct. The deleted region contains a 13-base sequence named upstream box (bases 123 to 135), which is highly conserved in cspA, cspB, cspG, and cspI, and is located 11 bases upstream of the Shine-Dalgarno (SD) sequence. The upstream box might be another cis element involved in translation efficiency of the cspA mRNA in addition to the SD sequence and the downstream box sequence. The relationship between the mRNA secondary structure and translation efficiency is discussed.  相似文献   

16.
Bacteriophage T7's gene 0.3, coding for an antirestriction protein, possesses one of the strongest translation initiation regions (TIR) in E. coli. It was isolated on DNA fragments of differing length and cloned upstream of the mouse dihydrofolate reductase gene in an expression vector to control the translation of this gene's sequence. The TIR's efficiency was highly dependent on nucleotides +15 to +26 downstream of the gene's AUG. This sequence is complementary to nucleotides 1471-1482 of the 16srRNA. Similar sequences complementary to this rRNA region are present in other efficient TIRs of the E. coli genome and those of its bacteriophages. There seems to be a correlation between this sequence homology and the efficiency of the initiation signals. We propose that this region specifies a stimulatory interaction between the mRNA and 16srRNA besides the Shine-Dalgarno interaction during the translation initiation step.  相似文献   

17.
Stenström CM  Isaksson LA 《Gene》2002,288(1-2):1-8
The downstream region (DR) located immediately after the initiation codon acts as a translational enhancer and depending on its sequence gene expression can vary considerably. In order to determine the influence of the DR on the apparent translation initiation, we have analyzed several naturally occurring DRs (a stretch of five codons) in a lacZ reporter gene. The efficiency of expression, associated with these DRs did not show any correlation to the expression levels connected with the natural genes. Changes of the iso-codon composition in the DR, thus maintaining the amino acid sequence in the gene product, gave significant variations in gene expression. Thus, the messenger RNA base sequence, and not the encoded amino acid sequence, in the early coding region is the determinant for the apparent efficiency of translation initiation and/or early elongation.  相似文献   

18.
19.
The DNA coding for the major outer membrane lipoprotein of Escherichia coli has been fused to the coding region of the beta-galactosidase gene to measure the effect of various mutations on the efficiency of translation initiation. The various mutants were made by either inserting or deleting a small number of nucleotides into or from a region just upstream of the ribosome-binding site. These small mutations dramatically affect translation initiation as measured by the production of beta-galactosidase. We postulate that these mutations affect translation initiation by altering the secondary structure of the messenger RNA. In one case, we predict that a stem and loop just upstream of the Shine-Dalgarno sequence sterically hinders the binding of the ribosome to the mRNA.  相似文献   

20.
Stenström CM  Holmgren E  Isaksson LA 《Gene》2001,273(2):259-265
The purine-rich Shine-Dalgarno (SD) sequence located a few bases upstream of the mRNA initiation codon supports translation initiation by complementary binding to the anti-SD in the 16S rRNA, close to its 3' end. AUG is the canonical initiation codon but the weaker UUG and GUG codons are also used for a minority of genes. The codon sequence of the downstream region (DR), including the +2 codon immediately following the initiation codon, is also important for initiation efficiency. We have studied the interplay between these three initiation determinants on gene expression in growing Escherichia coli. One optimal SD sequence (SD(+)) and one lacking any apparent complementarity to the anti-SD in 16S rRNA (SD(-)) were analyzed. The SD(+) and DR sequences affected initiation in a synergistic manner and large differences in the effects were found. The gene expression level associated with the most efficient of these DRs together with SD(-) was comparable to that of other DRs together with SD(+). The otherwise weak initiation codon UUG, but not GUG, was comparable with AUG in strength, if placed in the context of two of the DRs. The +2 codon was one, but not the only, determinant for this unexpectedly high efficiency of UUG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号