首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Angus and Angus crossbred heifers were ovariectomized, treated with oestradiol implants and randomly assigned to the natural photoperiod of fall to spring for 43 degrees N latitude or extra light simulating the photoperiod of spring to fall. Weekly blood samples were taken for 6 months (fall to spring equinox). All heifers were cannulated every 4 weeks and blood samples were taken for 4 h at 15-min intervals. Sera were assayed for LH, FSH, prolactin and oestradiol. In samples taken weekly, serum LH and FSH concentrations were higher while serum prolactin was lower in heifers exposed to natural photoperiod. There was a photoperiod X time interaction for both FSH and prolactin with concentrations diverging as photoperiod diverged. Circulating concentrations of oestradiol were not different between groups. In samples taken every 4 weeks at 15-min intervals, baseline concentrations of LH and FSH and LH pulse amplitude were higher while prolactin pulse frequency was lower in heifers exposed to natural photoperiod. There was a photoperiod X time interaction for each of these pulsatile characteristics. The correlation between LH and prolactin concentrations estimated from the 15-min samples differed between the two photoperiod treatment groups. The pooled correlation coefficient (r) was -0.12 under natural photoperiod and +0.50 under extra light. There was also a photoperiod X time interaction with negative correlations occurring when photoperiod was decreasing and positive correlations occurring when photoperiod was increasing. These results support the hypothesis that photoperiod alters serum concentrations of LH, FSH and prolactin in cattle.  相似文献   

2.
Eight nulliparous Angus and Angus crossbred heifers, which had been ovariectomized and treated with estradiol-17beta (E(2)) S.Q. implants for 6 months, were used to determine the effects of exogenous melatonin on serum gonadotropin and prolactin concentrations. Melatonin (15 mg) or corn oil (vehicle) was administered as a single i.m. injection at 1600 h daily for 12 weeks (March 19 to June 4, 1982). Blood samples taken weekly via jugular venipuncture at approximately 1100 h were assayed for luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin and E(2). At 4-week intervals, animals were fitted with indwelling jugular cannulae at 1100 h and samples were taken for 4 h at 15-min intervals. These samples were used to estimate pulsatile patterns of LH, FSH and prolactin. On the day of the first 15-min sampling, additional blood samples were collected at 30 min intervals from 1500 to 2200 h to determine the acute effect of melatonin injection on concentrations of LH, FSH and prolactin. Melatonin did not affect concentrations of FSH collected at weekly intervals (P=0.03) but tended to inhibit the decrease in concentrations of LH seen in the heifers treated with vehicle (P=0.12). There was a melatonin x time interaction for FSH (P=0.04) and a tendency for this interaction for LH (P=0.11). Circulating concentrations of prolactin were not different between treatment groups (P=0.83) nor was there a melatonin x time interaction (P=0.03). Estradiol was higher in the melatonin treated group (P=0.03) (15.58 +/- 4.17 versus 8.25 +/- 1.25 pg/ml) (X +/- SEM) and the melatonin x time interaction was significant (P=0.001). There was a tendency for a melatonin x time interaction for FSH pulse frequency (P=0.10). Prolactin pulse duration tended to decrease in response to melatonin treatment (P=0.14) (15.92 +/- 9.29 versus 11.04 +/- 4.57 min). These data do not support the hypothesis that melatonin decreases prolactin concentrations in cattle and indicates that other factors must mediate photoperiod regulation of this hormone. However, the interpretation of these data is less clear concerning the hypothesis that melatonin may maintain elevated concentrations of gonadotropins in the presence of increasing photoperiod. Concentrations of FSH appeared to be more affected by melatonin than LH; consistent with previous observations that FSH may be more affected than LH by changes in photoperiod (2). But neither LH or FSH concentrations were clearly shown to be consistantly elevated in the melatonin treatment group.  相似文献   

3.
Seasonal changes in nocturnal prolactin secretion and their relationship with melatonin secretion were monitored in wild (Mouflon, Ovis gmelini musimon) and domesticated sheep (breed Manchega, Ovis aries). Two groups of eleven adult females each, were maintained outdoors under natural photoperiod. Plasma concentrations of prolactin and melatonin were determined during the summer and winter solstices and the autumn and spring equinoxes. Blood samples were collected every 3h during the night hours, and 1h before and after the onset of darkness and sunrise. Maximum mean plasma concentrations of prolactin during the dark-phase in Mouflons were observed in the summer solstice, (P<0.001) and in the summer solstice and spring equinox in Manchega ewes (P<0.001). Mean plasma concentrations of prolactin were higher in the wild species (P<0.001) during the summer solstice. In contrast, during the spring equinox, mean levels of prolactin were higher in Manchega ewes than in Mouflons (P<0.05). Plasma prolactin concentrations showed a nocturnal rhythm in both breeds, with seasonal variations (P<0.001). The increase in plasma melatonin levels during the first hour after sunset was accompanied to increasing concentrations of PRL 1h after the onset of darkness, only in the autumn and spring equinox for the Mouflon, and in the summer solstice and spring equinox for the Manchega ewes. In Mouflons, the fall of plasma PRL concentrations about the middle dark-phase in all the periods studied, coincided with high levels of melatonin. A similar relation was observed in Manchega ewes only in the winter solstice and spring equinox. The current study shows that the nocturnal rhythm of prolactin secretion exhibits seasonal variation; differences in the patterns of prolactin secretion between Mouflon and Manchega sheep are taken to represent the effects of genotype.  相似文献   

4.
Finnish Landrace x Southdown ewes were ovariectomized (OVX) and subjected to daily photoperiods of 16L:8D (Group I) or 8L:16D (Group II) for 84 days. Ewes were then either adrenalectomized (ADX) (N = 5 for Group I; N = 4 for Group II) or sham ADX (N = 6 for Groups I + II). After surgery, ewes in Group I were subjected to 8L:16D for 91 days and 16L:8D for 91 days whereas ewes in Group II were exposed to 16L:8D for 91 days and 8L:16D for 91 days. Oestradiol implants were inserted into all ewes on Day 148. Sequential blood samples were taken at 28, 56, 91, 119, 147 and 168 days after surgery to determine secretory profiles of LH and prolactin. Photoperiod did not influence LH release in Group I in the absence of oestradiol. Although photoperiod influenced frequency and amplitude of LH pulses in Group II before oestradiol treatment, adrenalectomy did not prevent these changes in patterns of LH release. However, in Group II the increase in LH pulse amplitude during exposure to long days was greater (P less than 0.01) in adrenalectomized ewes than in sham-operated ewes. Mean concentrations of LH increased in ADX ewes on Days 91 (P = 0.07) and 119 (P less than 0.05). Adrenalectomy failed to influence photoperiod-induced changes in mean concentrations of LH, amplitude of LH pulses and frequency of LH pulses in the presence of oestradiol. Concentrations of prolactin were influenced by photoperiod. In Groups I and II concentrations of prolactin increased (P less than 0.01) after adrenalectomy, but the magnitude of this effect decreased over time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Prepubertal crossbred beef heifers were injected (i.v.) with 50 micrograms bovine LH every 2 h for 48 h (first injection at 0 h). At 28 h, number and diameter of ovarian follicles were determined by ultrasonic scanning, and unilateral removal of either the ovary bearing the largest follicle (Group UL, N = 5) or the opposite ovary (Group UO, N = 4) was performed; control animals remained intact (Group I, N = 5). Blood samples were taken every 2 h (starting at 0 h) for a 60-h period to assess concentrations of gonadotrophins and oestradiol. Preovulatory-like surges of LH occurred in 0/5, 4/4 and 5/5 heifers for Groups UL, UO and I respectively; the time of the LH surge did not differ between animals in Groups I and UO (mean = 40 h). FSH in Group UL heifers rose to a plateau immediately after unilateral ovariectomy; this pattern was not observed in the other two groups (P less than 0.01). The area under the curve for FSH was significantly different (P less than 0.05) among groups after 28 h. Preovulatory-like surges of FSH occurred coincidently with those of LH, except for one Group I heifer. An increase in the concentrations of oestradiol between 0 and 28 h was detected in all animals. Profiles of oestradiol during this period did not differ between heifers that had an LH surge (Group UO and I) and those that did not (Group UL).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Mink are seasonal photosensitive breeders; testis activity is triggered when days have less than 10 h light. Increasing and decreasing plasma concentrations of prolactin induce the spring and autumn moults. In a 5 year experiment, males were maintained under short days (8 h light:16 h dark) at 13 degrees C or long days (16 h light:8 h dark) at 21 degrees C, winter and summer conditions, respectively. Under winter and summer conditions, circannual cycles of prolactin secretion and moulting were observed at intervals of about 11 months. Recurrence of testis cycles was not evident. In a second experiment, males were maintained under an 8 h light:16 h dark cycle from the winter solstice or under 10 h light:14 h dark, 12 h light:12 h dark or 14 h light:10 h dark cycles from 10 February. Under 8 h light:16 h dark cycle, testis regression was slightly later than under natural conditions, indicating photorefractoriness. However, mink remained sensitive to light: the longer the photoperiod, the faster the testis regression. In a third experiment, males were transferred under 8 h light:16 h dark or 16 h light:8 h dark from 15 May (group 1), 12 June (group 2) or 4 July (group 3); males submitted to long days received melatonin capsules on the day of transfer. Increasing concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and testis volume were shown by half the males in group 2 and nearly all the males in group 3; the constant release of melatonin from implants was more efficient than short days; but in the three groups, prolactin concentrations decreased in the few days after short-day or melatonin treatment. Overall, the results demonstrate endogenous circannual rhythms of prolactin secretion, body weight and moulting. Although a refractory period to short days was observed, the annual cycle of testis activity totally relies on the annual changes in daylength.  相似文献   

7.
Two experiments were conducted to examine seasonal changes in circulating LH concentrations in ovariectomized heifers. In experiment 1, four Holstein heifers were ovariectomized in April 1977 during middiestrus. Blood samples were collected daily for 30 days surrounding each equinox and solstice for one year to examine changes in plasma LH levels at the time of seasonal photoperiod changes. The LH concentrations were highest during the winter solstice period and lowest during the summer solstice period. In addition, samples taken at two-week intervals indicated a distinct LH profile with maximal LH concentrations during November-April and minimal concentrations during May-October. In experiment 2, eight Holstein heifers were ovariectomized in June-July, 1979 and given an estradiol or a control implant in October. A distinct LH profile for the interval extending from January, 1980 to February, 1981 was found in the heifers that were not treated with estradiol. Concentrations were maximal during December-April and minimal during May-November. The LH profile followed a similar pattern in the estradiol-treated heifers; however, the overall profile was at a higher level. These data indicate that underlying seasonal reproductive mechanisms are present in cattle even though the species ovulates and breeds throughout the year.  相似文献   

8.
The hypotheses that secretion of luteinizing hormone (LH) varies with season and that estradiol may modulate the seasonal fluctuation in secretion of LH in cows were investigated. Seven mature cows were ovariectomized approximately 30 days before initiation of the experiment. Three of the ovariectomized cows (OVX-E2) were administered a subcutaneous estradiol implant that provided low circulating levels of 17 beta-estradiol. The remaining 4 cows (OVX) were not implanted. From December 21, 1982, to September 20, 1984, blood samples were collected sequentially (at 10-min intervals for 6 h) at each summer and winter solstice, and each spring and autumn equinox. In addition, from March 17, 1983, to March 17, 1984, sequential samples were collected midway between each solstice and equinox. Concentration of LH was measured in all samples, and concentration of estradiol was measured in pools of samples. An annual cycle in mean serum concentration of LH and amplitude of LH pulses was detected in both groups of cows. The seasonal pattern did not differ in the two treatment groups. Serum concentration of LH and amplitude of LH pulses were highest around the spring equinox, decreased gradually to the autumn equinox, and then increased and peaked again during the following spring equinox. Frequency of LH pulses and concentration of estradiol in serum did not vary with season. Circulating concentrations of LH and amplitude of pulses tended to be higher in OVX-E2 than OVX cows throughout the experimental period. Frequency of pulses of LH was lower in OVX-E2 than OVX cows throughout the experiment. Concentrations of estradiol were higher in the implanted cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Annual variations in concentrations of luteinizing hormone (LH) and testosterone in plasma were analysed in relation to the antler cycle in six adult male roe deer exposed to a natural photoperiod (latitude 46 degrees 10'N) and in four adult males maintained in a constant short-day photoperiod (8 h light: 16 h dark) for a year, from the winter solstice at which time both groups of animals had antlers in velvet. The animals were sampled, every 15 min for 2 or 4 h at intervals of one month for a year. Under both natural and experimental conditions, LH concentrations were high from January to March, but in the experimental conditions they decreased between April and May-June, whereas in the natural conditions they increased. Plasma LH concentration was lowest between July and November in animals under natural photoperiod, whereas under 8 h light:16 h dark photoperiod a second increase in plasma LH occurred between August and September. Between March and August, concentrations of plasma testosterone increased under natural photoperiod, whereas under experimental photoperiod there was a biphasic pattern of plasma testosterone with peaks between February and May and between September and November. Under natural photoperiod, antlers were cast in November, 369 +/- 6 days after the previous antlers were cast. Under experimental photoperiod, antlers were cast after 193 +/- 10 days, and a new set developed. The sexual cycle of the male appears to be initiated by an endogenous rhythm in winter and is then maintained by hormonal changes resulting from increasing photoperiod in spring.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
It was suggested that an early increase in gonadotrophin secretion in calves aged between 6 and 24 weeks might be critical for initiating developmental changes culminating in puberty. An early rise in luteinizing hormone (LH) release appears to be caused by an increase in LH pulse frequency in bull calves and by an increase in LH pulse amplitude in heifer calves. Previously we have found differences in the characteristics of the LH rise between prepubertal beef calves born in spring or fall; however, age at puberty was not affected by season of birth. Here we report the LH/FSH secretory patterns in prepubertal bull and heifer calves (Hereford x Charolais), born in March or April, respectively (i.e., early or late during the spring calving season; six animals of each sex born at each time). The bull calves of both groups reached puberty (defined as an attainment of scrotal circumference of >or=28 cm) at 43.2+/-1.3 weeks of age (P>0.05). Age at puberty for March- and April-born heifer calves (defined as the age at which serum progesterone concentrations first exceeded 0.4 ng/ml) averaged 56.0+/-1.4 weeks (P>0.05). Based on blood samples taken weekly from birth to 26 weeks of age, and then every other week until puberty, bull calves born in March exceeded April-born bull calves in mean serum LH concentrations at 6, 10 and 12 weeks of age (P<0.05). Mean FSH concentrations were greater (P<0.05) in March-born compared to April-born bull calves from 34 to 32 weeks before puberty. Mean serum LH (at 40, 42 and 56 weeks) and FSH concentrations (at 2, 10, 20, 22-26, 30 and 56 weeks of age) were greater (P<0.05) in heifer calves born in April than March. On the basis of frequent blood sampling (every 12 min for 10 h), heifer calves born in April exceeded March-born animals in mean LH and FSH concentrations, at 5 and 25 weeks, and LH pulse frequency, at 5, 10 and 25 weeks of age (P<0.05). None of the parameters of LH secretion (i.e., mean concentrations of LH, LH pulse frequency and amplitude based on frequent blood collection) differed between March- and April-born bull calves in this study (P>0.05). In summary, March-born bull calves had greater mean serum LH and FSH concentrations prior to 24 weeks of age than April-born calves. April-born heifer calves had greater mean serum concentrations of LH and FSH but this difference was not confined to the early postnatal period. Although there were significant differences in absolute amounts of LH secreted, there were no differences in the frequency of LH secretory pulses amongst March- and April-born bull calves and no differences in LH pulse amplitude in heifer calves born in March or April. As these particular parameters of LH secretion, as well as age at puberty, are not affected by the time or season of birth, they may be primary hormonal cues governing sexual development in bulls and heifers, respectively.  相似文献   

11.
Onset of sexual maturation was determined in weanling male collared lemmings exposed to one of three experimental regimens of different photoperiods before and after weaning. Animals gestated in photoperiods of either 16 h light:8 h dark or 8 h light:16 h dark. Those from 16 h light:8 h dark were transferred at 19 days of age to either 20 h light:4 h dark or 8 h light:16 h dark; those gestated under 8 h light: 16 h dark remained in that photoperiod throughout the experiment. After exposure for 15, 20, 25 or 30 days to the postweaning photoperiod, animals were killed and the following parameters assessed: body weight, testes weight, seminal vesicle weight, the presence or absence of epididymal spermatozoa and serum concentrations of prolactin, testosterone and corticosterone. All parameters except serum testosterone were significantly influenced by photoperiod. Animals housed under 8 h light:16 h dark had significantly greater body weights than those housed under 20 h light:4 h dark, a response that differs from that reported for other arvicoline rodents. The group gestated on 16 h light:8 h dark and transferred on day 19 to 8 h light:16 h dark had lower testes and seminal vesicle weights than the other two groups, and mature spermatozoa in the epididymides appeared 5 days later than in the 20 h light:4 h dark group. Serum prolactin was largely undetectable in animals from both 8 h light:16 h dark groups, but all males housed in 20 h light:4 h dark had 2.0-15.0 ng prolactin ml-1. Concentration of serum corticosterone was higher in animals weaned into long photoperiod, and decreased with age. These data indicate that weanling male D. groenlandicus are reproductively photoresponsive, but use a decrease in photoperiod, not static short-photoperiod exposure, to alter the rate of development. Prolactin was largely undetectable in animals exposed to short photoperiod, indicating that high concentrations of this hormone are not important for maturation. Low prolactin concentrations in animals in short photoperiods may mediate the annual moult to white pelage. The short-photoperiod-mediated decrease in corticosterone may play a role in seasonal changes in body weight and composition.  相似文献   

12.
Castrate rams and ovariectomized ewes were maintained in the presence of entire rams and ewes and subjected to successive periods of alternating 6 h light:18 h darkness ('short' days) and 18 h light:6 h darkness ('long' days) preceded by a period of 12 h light:12 h darkness ('constant' light days). Plasma concentrations of LH and prolactin were measured in the castrate animals in order to determine how LH and prolactin secretion responded to the artificial light regime and corresponding periods of elevated or depressed testicular and ovarian activity in the entire rams and ewes. There was no variation in mean plasma LH concentrations or LH pulse frequency with either the changes in photoperiod or the phases of gonadal activity in the entire animals. However, there was a highly significant (P less than 0.001) relationship between prolactin secretion and the artificial photoperiod in both castrate groups with high and low levels coinciding with long and short days respectively. In addition, there was a marginally significant (P less than 0.1) relationship between prolactin secretion in the castrate ram and the stage of testicular activity in the entire rams with elevated levels associated with regressed activity. Prolactin secretion in the ovariectomized ewes was significantly (P less than 0.05) related to the phase of ovarian development with high levels associated with acyclic activity. It is concluded that LH secretion and pituitary responsiveness to exogenous GnRH were not modified by the artificial light regime. However, the changing light pattern was physiologically 'perceived' by the castrate animals as indicted by a concomitant variation in plasma prolactin concentrations.  相似文献   

13.
Prepubertal gilts, having undergone a 7-day period of feed restriction to a maintenance ration, were allocated to one of 4 treatments; restricted feeding at 09:00 and 17:00 h for an 8th day both with (Group RN) and without (Group R) administration of the opioid antagonist naloxone hydrochloride (1 mg.kg-1 at 09:30 h followed by 0.5 mg.kg-1 at hourly intervals for 7 h), or feed to appetite with (Group ALN) and without (Group AL) naloxone administration. Gilts were bled at 10-min intervals on Day 8 from morning to evening feed and plasma LH, FSH and prolactin concentrations were measured by radioimmunoassay. Compared with Group R gilts, Group AL gilts exhibited significantly (P less than or equal to 0.05) higher mean and maximum LH concentrations and pulsatility, lower prolactin concentrations (P less than 0.05) but no significant difference in FSH secretion. Naloxone significantly depressed the increase in LH after re-feeding (Group ALN) (P less than 0.05). Once again there were no significant effects on FSH secretion. Naloxone also significantly depressed prolactin secretion in feed-restricted gilts (P less than 0.05). These results confirm that re-feeding of feed-restricted prepubertal gilts stimulates an immediate increase in LH secretion and that this elevation is not mediated via a suppression of inhibitory endogenous opioidergic tone. Rather, naloxone treatment appeared to expose a latent inhibition of LH secretion. The control of LH secretion is distinct from that of FSH in this model.  相似文献   

14.
Individual groups of 6 ram lambs were housed within a controlled environment and exposed to one of 6 photoperiod schedules. Groups I and II received 8 (short day) or 16 (long day) h of continuous light, respectively; Groups III, IV and V were exposed to asymmetrical skeleton photoperiods consisting of a main light period of 7 h followed 9 h later by a light pulse of 1 h, 15 min or 1 min duration, respectively, and Group VI was exposed to a symmetrical skeleton photoperiod consisting of two 1-h light pulses positioned 16 h apart. After 4 weeks of treatment serum concentrations of prolactin and testosterone were measured over 24 h. Long-day responses characteristic of the 16L:8D photoperiod (i.e. elevated prolactin and reduced testosterone) were obtained in each of the asymmetric light-pulse treatment groups, but whereas prolactin was elevated over the full 24 h in lambs exposed to 16L:8D, two prominent nocturnal prolactin releases were largely responsible for the high 24-h mean prolactin values in Groups III, IV and V. Reduced serum testosterone in these same groups could not be attributed to a diurnal pattern of secretion but was associated with an overall decrease in testosterone pulse frequency. Prolactin and testosterone levels in Group IV were intermediate between those observed in lambs exposed to 8 or 16 h of light. In summary, light pulses of short duration (1 min) positioned at 17 h after dawn can produce endocrine changes in lambs similar to those observed in lambs exposed to 16 h of continuous light.  相似文献   

15.
Three experiments were conducted to determine the effect of sampling interval on serum concentrations of LH, FSH, and prolactin (PRL) in prepubertal, ovariectomized, and cycling gilts. In all experiments, blood samples were drawn at 2-min intervals for 4 h from indwelling jugular catheters. Mean serum hormone concentrations, mean number of peaks, and mean and maximum peak heights of LH, FSH, and PRL were calculated using values reflecting 2-, 6-, 10-, 20-, 30-, and 60-min sampling intervals. For LH, FSH, and PRL, mean serum concentrations can be obtained through blood samples drawn at hourly intervals. Since LH peaks are very distinct in pigs, the number of secretory peaks and mean peak height can be obtained via samples drawn at 20-min intervals. Since FSH and PRL peaks are less well defined, a more frequent sampling interval (10 min) is needed to determine number of peaks and mean peak height. To obtain the maximum peak height or the number of minutes for LH, FSH, or PRL to rise from its nadir to zenith, blood samples need to be drawn at 2-min intervals. Regardless of reproductive state, these data indicate that the sampling interval needed to characterize serum concentrations of LH, FSH, and PRL in the gilt is dependent upon the parameter in question.  相似文献   

16.
Two groups of ovary-intact ewes were placed in separate photochambers on the day of the vernal equinox (VE). One group was exposed to a 16 h light:8 h dark (16L:8D) photoperiod and the other to 8L:16D. On the day of the summer solstice (SS) and at 90-91-day intervals thereafter [autumnal equinox (AE), winter solstice (WS), VE and SS], each group was changed to the opposite photoperiod. The latent period between each change and either onset or cessation of cycles, as determined by measuring blood progesterone concentrations, was recorded. The latent period between change to 8L:16D and onset of cycles was shortest after the exposure at AE and longest after exposure at WS (P less than 0.001). The latent period after AE was shorter (P less than 0.001) than after VE. The correlations were small between ambient temperature and interval to onset of cycles. The latent period to cessation of cycles in response to 16L:8D was shorter after SS exposure than after WS exposure (P less than 0.01), but other differences were not significant. There was a strong (r = -0.94, P less than 0.05) negative correlation between interval to cessation of cycles and ambient temperature. Cessation of cycles in response to 16L:8D occurred more rapidly (P less than 0.001) than onset in response to 8L:16D. These results show that responsiveness to the inductive effects of photoperiod varies significantly with time of the sidereal year.  相似文献   

17.
Spring-born crossbred ewe lambs were raised in a natural photoperiod and saline (N = 6) or naloxone (1 mg/kg) in saline (N = 6) was injected (i.m.) every 2 h for 6 h at 5, 10 and 15 weeks of age and for 8 h at 20, 25 and 30 weeks of age. Blood samples were taken every 12 min during treatment periods. Naloxone had no effect on time to first oestrus (controls 235 +/- 6 days, naloxone 242 +/- 7 days). Mean serum LH concentrations and LH pulse frequency were elevated by naloxone in ewe lambs at 20, 25, and 30 weeks of age (P less than 0.05). The only FSH response to naloxone was a depression of mean serum concentrations at 30 weeks of age (P less than 0.05). LH pulse amplitude was elevated at 5 weeks of age in all ewe lambs and declined thereafter to a nadir at 30 weeks of age in control, but not in naloxone-treated animals (P less than 0.05). LH pulse frequency was elevated at 10 weeks of age in control ewe lambs and in all animals at 30 weeks of age (P less than 0.05). FSH pulse frequency declined from 5 weeks of age in control ewe lambs (P less than 0.05), with very few pulses noted in 25- and 30-week-old animals. We conclude that (1) opioidergic suppression of LH, but not FSH, secretion developed at 20 weeks of age in the growing ewe lambs used in the present study, with no obvious change in suppression before the onset of first oestrus: (2) pulsatile FSH secretion occurred in the young ewe lamb but was lost as the lamb matured: (3) attainment of sexual maturity was preceded by an elevation in LH pulse frequency.  相似文献   

18.
The reproductive neuroendocrine response of Suffolk ewes to the direction of daylength change was determined in animals which were ovariectomized and treated with constant release capsules of oestradiol. Two groups of animals were initially exposed to 16 or 10 h light/day for 74 days. On day zero of the study, when one group of ewes was reproductively stimulated (elevated LH concentrations) and the other reproductively inhibited (undetectable LH concentrations), half the animals from each group were transferred to an intermediate daylength of 13 h light/day. The remaining ewes were maintained on their respective solstice photoperiods to control for photorefractoriness. LH concentrations rose in animals experiencing a 3 h decrease in daylength from 16L:8D to 13L:11D while LH concentrations fell to undetectable values in those that experienced a 3 h increase in daylength from 10L:14D to 13L:11D. The photoperiodic response of the Suffolk ewe, therefore, depends on her daylength history. Such a result could be explained if the 24-h secretory pattern of melatonin secretion, known to transduce photoperiodic information to the reproductive axis, was influenced by the direction of change of daylength. Hourly samples for melatonin were collected for 24 h 17 days before and three times after transfer to 13L:11D. The melatonin secretory profile always conformed to daylength. Therefore, the mechanism by which the same photoperiod can produce opposite neuroendocrine responses must lie downstream from the pineal gland in the processing of the melatonin signal.  相似文献   

19.
The patterns of LH, FSH, prolactin and oestradiol-17beta, before and during natural oestrus, and of progesterone during the following cycle were studied in four French Alpine dairy goats and compared with those obtained after synchronization of oestrus in the same animals. The highest concentration of oestradiol-17beta was measured at the beginning of oestrus and was followed 3 hours later by simultaneous rises of LH, FSH and prolactin. A second FSH peak was observed 48h after the first one. On D(3) (D(0) = day of oestrus) progesterone concentration was over 1 ng/ml. The luteal phase lasted 15 days. Peak concentrations of oestradiol-17beta and progesterone were higher in animals when oestrus was induced. This was attributed to their higher ovulation rate. The second FSH peak was lower, and the interval between oestradiol-17beta peak and gonadotrophin surge longer, than at natural oestrus.  相似文献   

20.
It has been suggested that changes in endogenous glutamatergic stimulation of secretion of luteinizing hormone (LH) induced by photoperiod play a role in regulating seasonal cycles of reproductive activity. The aim of this study was to test the hypothesis that the glutamatergic control of the secretion of LH in the male Syrian hamster is sensitive to photoperiod, by determining whether the glutamate agonist N-methyl-D-aspartate (NMDA) could stimulate LH secretion in this species and, if so, to determine whether the response varied among animals exposed to different daylengths. In the first experiment, adult male hamsters were housed in either short day (8 h light: 16 h dark) for 6 weeks to induce testicular regression, or long days (16 h light: 8 h dark) to maintain testicular function, and the effects of systemic administration of NMDA on serum LH concentrations were determined. In the short-day hamsters, all s.c. doses of NMDA (25-75 mg kg-1 body weight) produced a robust rise in serum LH concentrations within 15 min. In the long-day hamsters, basal LH concentrations were higher than in short-day hamsters, but only the highest dose of NMDA produced a significant increase in LH concentrations, and the magnitude of this increment was less than those observed in short days. In hamsters in long days, the low doses of NMDA that did not significantly alter LH concentrations nevertheless significantly suppressed serum prolactin concentrations, demonstrating the efficacy of the drug. In hamsters in short days, serum prolactin concentrations were at the limit of detection of the assay, so no inhibitory effect of NMDA on prolactin secretion could be determined on this photoperiod. In the second experiment, the effects of a fixed dose of NMDA (50 mg kg-1 body weight) was tested at intervals in hamsters exposed to short days for a prolonged period such that their testes initially regressed, but then became scotorefractory and testicular recrudescence occurred. After 6 and 12 weeks in short days, NMDA stimulated LH secretion. However, after 24 weeks in short days when testicular recrudescence was complete, the response to NMDA was lost. A third experiment determined whether the reduced response to NMDA in hamsters on long days relative to those in short days might result from higher concentrations of circulating testosterone. Hamsters in long days were castrated to remove the influence of gonadal feedback, and the response to NMDA tested 3 weeks later when endogenous LH concentrations had risen to levels characteristic of the chronically castrated condition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号