首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: To investigate the possibilities of sperm head volume as a sorting criterion for gender preselection, we determined the magnitude of the difference in volume of X- and Y-chromosome-bearing bull sperm heads. MATERIALS AND METHODS: Bovine sperm heads were sorted on the basis of their DNA content in X- and Y-chromosome-bearing fractions, using an existing flow-cytometric technique. Images of sperm heads of both populations were recorded using Differential Interference Contrast (DIC) microscopy. After reconstructing the DIC images, the area and the optical thickness of sperm heads of both populations were determined. RESULTS: We found a difference in volume of X- and Y-bearing bovine sperm heads matching the difference in DNA content (3.5-4%). CONCLUSIONS: Our findings indicate that volume can be used as a criterion to distinguish X- and Y-chromosome-bearing sperm, making development of a technique to sort X- and Y-chromosome-bearing sperm based on head volume theoretically possible. A strong advantage of such a technique over the existing technique based on DNA content would be that X- and Y-chromosome-bearing sperm cells could thus be sorted without subjecting them to any staining.  相似文献   

2.
van Munster EB 《Cytometry》2002,47(3):192-199
BACKGROUND: It was found earlier that the difference in volume between unstained X- and Y-chromosome-bearing sperm heads could be detected using interference microscopy in visible light. This could be the basis for an alternative to the conventional method to sort X and Y sperm, which uses DNA staining and ultraviolet (UV)-excitation that may be harmful to sperm cells. A novel technique is introduced combining interferometry with flow cytometry. MATERIALS AND METHODS: Interference optics were built into an existing flow cytometer/cell sorter and used to sort fresh unstained bull sperm cells on the basis of their head volume. Sorted fractions were stained with a DNA stain, and reanalyzed using the conventional method. RESULTS: Purities between 60-66% were found in both X- and Y-enriched fractions. It was possible to sort up to 300 cells per second. The system was found to be less sensitive to the orientation of sperm cells than the conventional method. CONCLUSIONS: Interferometry can be combined with flow cytometry and used to obtain significantly enriched fractions of X- and Y-bearing sperm without staining and UV light. Sorting speeds and purities at this point, however, are much lower than with the conventional method.  相似文献   

3.
Welch GR  Johnson LA 《Theriogenology》1999,52(8):1343-1352
Laboratory validation is essential in developing an effective method for separating X and Y sperm to preselect sex. Utilizing sexed sperm from a particular experiment to test fertility and achieve the subsequent phenotypic sex without knowing the likely outcome at conception is too costly for most applications. Further, research advances need to be built on an ongoing assessment with respect to the collection of data to continue progress towards achieving a successful outcome. The Beltsville Sperm Sexing Technology, which is based on the sorting of X- and Y-bearing sperm through the process of flow-cytometric sperm sorting, is also well suited for validation in the laboratory by "sort reanalysis" of the sperm X- and Y-bearing fractions for DNA content. Since the sexing technology is based on the use of Hoechst 33342, a permeant nuclear DNA stain for sorting X- and Y-bearing sperm, it also can be the marker for determining the proportions of X and Y populations by sort reanalysis. The process consists of using an aliquot of the sorted sperm and sonicating to obtain sperm nuclei. The uniformity of the nuclear staining is re-established through the addition of more Hoechst 33342. Separate analysis of each aliquot produces a histogram that is fitted to a double gaussian curve to determine proportions of X and Y populations. The relative breadths of the distributions of DNA of X- and Y-bearing sperm within a species affects interpretations of the histogram. Sort reanalysis is consistently repeatable with differences in X/Y DNA equal to or greater than 3.0%. This information on sex ratio of the sperm then provides the precise tool by which one can predict the outcome in terms of sex, from a particular sample of semen. Simple analysis of unsorted sperm to determine the proportions of X- and Y-bearing sperm based on DNA content is also an effective tool for validating sperm-sex ratio, whether it is in a sample assumed to be 50:50 or predicted to be something other than 50:50. This simple analysis provides for a check on the potential sex ratio of any sample of semen.  相似文献   

4.
Flow cytometric sperm sorting based on X and Y sperm DNA difference has been established as the only effective method for sexing the spermatozoa of mammals. The standard method for verifying the purity of sorted X and Y spermatozoa has been to reanalyze sorted sperm aliquots. We verified the purity of flow-sorted porcine X and Y spermatozoa and accuracy of DNA reanalysis by fluorescence in situ hybridization (FISH) using chromosome Y and 1 DNA probe. Eight ejaculates from 4 boars were sorted according to the Beltsville Sperm Sexing method. Porcine chromosome Y- and chromosome 1-specific DNA probes were used on sorted sperm populations in combination with FISH. Aliquots of the sorted sperm samples were reanalyzed for DNA content by flow cytometry. The purity of the sorted X-bearing spermatozoa was 87.4% for FISH and 87.0% for flow cytometric reanalysis; purity for the sorted Y-bearing spermatozoa was 85.9% for FISH and 84.8% for flow cytometric reanalysis. A total of 4,424 X sperm cells and 4,256 Y sperm cells was examined by FISH across the 8 ejaculates. For flow cytometry, 5,000 sorted X spermatozoa and 5,000 Y spermatozoa were reanalyzed for DNA content for each ejaculate. These results confirm the high purity of flow sorted porcine X and Y sperm cells and the validity of reanalysis of DNA in determining the proportions of X- and Y-sorted spermatozoa from viewing thousands of individual sperm chromosomes directly using FISH.  相似文献   

5.
Preselection of the gender of offspring is a subject that has held man's attention since the beginning of recorded history. Most scientific hypotheses for producing the desired sex of offspring address separation of X- and Y-bearing sperm, and most have had limited, if any success. Eight of these hypotheses and their experimental verifications are discussed here. Three hypotheses are based on physical characteristics of sperm, one on supposed differences in size and shape, another on differences in density, and a third on differences in surface charge. There has been no experimental verification of differences based on size and shape, and the results from attempts to verify separation of X- and Y-bearing sperm based on density have been mixed. Electrophoresis may provide a method for separating X-and Y-bearing sperm, but it is currently unproven and would be of little practical utility, since sperm motility is lost. A fourth hypothesis employs H-Y antigen to select preimplantation embryos. This method reliably produces female offspring, but does not permit the selection of male offspring and does not work on sperm. There are two applications of the theory that X- and Y-bearing sperm should be separable by flow fractionation. Flow fractionation using thermal convection, counter-streaming sedimentation, and galvanization is highly promoted by its originator but has not gained wide acceptance due to lack of independent confirmation. Flow fractionation by laminar flow is said to provide up to 80% enrichment of both X- and Y-bearing sperm; however, this method also has not been confirmed by other workers or tested in breeding trials. The sixth theory discussed is that of separation through Sephadex gel filtration. This method may provide enrichment of X-bearing sperm, but, again, other experimenters have not been able to adequately confirm the enrichment. The best-known approach to sperm separation is that employing albumin centrifugation, yet even with this method, not all researchers have been able to confirm a final fraction rich in Y sperm, and trials in animals have given contradictory results. The most reliable method for separating X- and Y-bearing sperm is use of flow cytometric and flow sorting techniques. These techniques routinely separate fractions with a purity greater than 80% and can be above 90%. Unfortunately, these methods do not always work for human samples. Furthermore, as with electrophoretic approaches, the methods identify and separate only chemically fixed sperm and provide limited biological applications. Generally accepted experimental laboratory procedures for verification of proportions of X- and Y-bearing sperm are lacking. Staining of sperm with the fluorochrome dye quinacrine will identify a structure known as the “F-body” in human sperm and sperm from a few primates. The dye does not work other mammalian sperm. Its validity as a measure of sperm genotype is the topic of debate. We have used two methods to verify claims of separation of sperm. flow cytometry, and in vitro fusion. One can use flow cytometry to test the efficiency of separation of sperm samples. We tested seven commercial methods for the separation of bovine sper, and none were found of result in enrichment. We also used in vitro fusion of human sperm to denuded hamster ova to test enrichment of Y-bearing sperm from the albumin separation process. out results demonstrated no Y-bearing-sperm enrichment from this process. Scientific problems impeding the success of separation seem to be under investigation with an ever-increasing rate. Hybridization probes for DNA sequences specific to the X or Y chromosome may be the next appropriate technology to test of the selection and separation of X- and Y-chromosome-bearing mammalian sperm.  相似文献   

6.
Johnson LA  Welch GR 《Theriogenology》1999,52(8):1323-1341
Sex preselection that is based on flow-cytometric measurement of sperm DNA content to enable sorting of X- from Y-chromosome-bearing sperm has proven reproducible at various locations and with many species at greater than 90% purity. Offspring of the predetermined sex in both domestic animals and human beings have been born using this technology since its introduction in 1989. The method involves treating sperm with the fluorescent dye, Hoechst 33342, which binds to the DNA and then sorting them into X- and Y-bearing-sperm populations with a flow cytometer/cell sorter modified specifically for sperm. Sexed sperm are then used with differing semen delivery routes such as intra-uterine, intra-tubal, artificial insemination (deep-uterine and cervical), in vitro fertilization and embryo transfer, and intra-cytoplasmic sperm injection (ICSI). Offspring produced at all locations using the technology have been morphologically normal and reproductively capable in succeeding generations. With the advent of high-speed cell sorting technology and improved efficiency of sorting by a new sperm orienting nozzle, the efficiency of sexed sperm production is significantly enhanced. This paper describes development of the these technological improvements in the Beltsville Sexing Technology that has brought sexed sperm to a new level of application. Under typical conditions the high-speed sperm sorter with the orienting nozzle (HiSON) results in purities of 90% of X- and Y-bearing sperm at 6 million sperm per h for each population. Taken to its highest performance level, the HiSON has produced X-bearing-sperm populations at 85 to 90% purity in the production of up to 11 million X-bearing-sperm per h of sorting. In addition if one accepts a lower purity (75 to 80%) of X, nearly 20 million sperm can be sorted per h. The latter represents a 30 to 60-fold improvement over the 1989 sorting technology using rabbit sperm. It is anticipated that with instrument refinements the production capacity can be improved even further. The application of the current technology has led to much wider potential for practical usage through conventional and deep-uterine artificial insemination of many species, especially cattle. It also opens the possibility of utilizing sexed sperm for artificial insemination in swine once low-sperm-dose methods are perfected. Sexed sperm on demand has become a reality through the development of the HiSON system.  相似文献   

7.
Flow cytometric sorting of non-human primate sperm nuclei   总被引:7,自引:0,他引:7  
Pre-determination of the sex of offspring has implications for management and conservation of captive wildlife species, particularly those with single sex-dominated social structures. Our goal is to adapt flow cytometry technology to sort spermatozoa of non-human primate species for use with assisted reproductive technologies. The objectives of this study were to: (i) determine the difference in DNA content between X- and Y-bearing spermatozoa (ii) sort sperm nuclei into X- and Y-enriched samples; and (iii) assess the accuracy of sorting. Spermatozoa were collected from two common marmosets (Callithrix jacchus), seven hamadryas baboons (Papio hamadryas) and two common chimpanzees (Pan troglodytes). Human spermatozoa from one male were used as a control. Sperm nuclei were stained (Hoechst 33342), incubated and analyzed using a high-speed cell sorter. Flow cytometric reanalysis of sorted samples (sort reanalysis, 10,000 events/sample) and fluorescence in situ hybridization (FISH; 500 sperm nuclei/sample) were used to evaluate accuracy of sorting. Based on fluorescence intensity of X- and Y-bearing sperm nuclei, the difference in DNA content between X and Y populations was 4.09 +/- 0.03, 4.20 +/- 0.03, 3.30 +/- 0.01, and 2.97 +/- 0.05%, for marmoset, baboon, chimpanzee and human, respectively. Sort reanalysis and FISH results were similar; combined data revealed high levels of purity for X- and Y-enriched samples (94 +/- 0.9 and 93 +/- 0.8%, 94 +/- 0.7 and 94 +/- 0.5%, 91 +/- 0.9 and 97 +/- 0.6%, 94 +/- 0.6 and 94 +/- 0.9%, for marmoset, baboon, chimpanzee and human, respectively). These data indicate the potential for high-purity sorting of spermatozoa from non-human primates.  相似文献   

8.
韦鹍  潘娟 《四川动物》2005,24(1):114-120
分离X、Y精子,用于人工授精或体外受精,是目前实现哺乳动物性别控制的最有效手段。本文对哺乳动物精子分离及分离精子纯度评估方法的研究历史及现状作一回顾和总结。  相似文献   

9.
The yield of flow cytometric sorted X‐ and Y‐chromosome‐bearing sperm in a given time period is an important factor in the strategies used for fertilization and the production of sex‐preselected offspring. This yield is dependent on the efficiency with which the modified flow cytometer/cell sorter analyzes the DNA of spermatozoa. The efficiency is directly related to the number of sperm with the correct orientation during DNA analysis. Currently, the efficiency of flow cytometric sperm sorting is low since orientation of the sperm head to laser excitation is rate limiting. To overcome this problem, a new nozzle was designed to enhance sperm orientation and tested under flow cytometric sorting conditions. The degree of orientation improvement was determined with different sample rates using viable sperm and dead sperm of several different species. There was at minimum, a two‐fold increase in the proportion of oriented sperm when comparing the new nozzle with the currently used modified flow cytometer/cell sorter employing a beveled needle. More than 60% of intact bull sperm and boar sperm were correctly oriented compared with 25% to 30% using the beveled needle system. A unique characteristic of the novel nozzle was that the proportion of oriented sperm was independent of sample rate and of sperm motility. The accuracy of DNA measurement together with high purity sorting was tested using the novel nozzle. The novel nozzle was unique in that accuracy of measurement and sorting performance were not diminished. Using the new nozzle, samples of 88% purity of sorted X‐sperm and Y‐sperm were obtained for viable bull and boar sperm. The yield of flow cytometric sorted X‐ and Y‐chromosome‐bearing sperm using the novel nozzle was, on average, twice that obtained by using the beveled needle system in conjunction with a standard equipment nozzle for orientation. Mol. Reprod. Dev. 52:50–56, 1999. Published 1999 Wiley‐Liss, Inc.  相似文献   

10.
The separation of two sperm populations is possible using the technique of flow sorting, provided that a significant difference exists in the DNA content of X- and Y-bearing sperm. In order to ascertain whether or not chromosome damage was induced in sorted sperm, chromosome preparations were made from isolated sperm that had been microinjected into hamster eggs. While egg chromosomes exhibited a low frequency of chromosome aberrations, ranging from 4 to 7%, a large proportion of sperm cells exhibited chromosome damage. Between 29% of unstained and unsorted sperm and 38% of stained and unsorted sperm exhibited some type of chromosomal abnormality and this proportion increased to 50% in sorted sperm. If only damaged sperm nuclei are considered, the two unsorted sperm groups had a mean of 0.6 breaks, 0.8 triradial exchanges, and 0.2 quadriradial exchanges per nucleus. However, sorted sperm, which were stained with a fluorochrome and exposed to UV-laser irradiation, exhibited a mean of 2.9 breaks, 2.6 triradial, and 1.9 quadriradial exchanges per nucleus in which damage occurred. These observations indicate that the treatments and manipulations to which sperm nuclei are subjected during flow sorting cause chromosomal aberrations, and that exposure of the cells to UV-laser irradiation contributes substantially to the chromosome damage observed.  相似文献   

11.
Bull sperm and paramecium cilium were exposed to uniform static magnetic fields to observe their magnetic orientations and measure their anisotropic diamagnetic susceptibility (deltachi) for each. The prepared samples were whole bull sperm, bull sperm flat heads, and paramecium cilia, because bull sperm tails in a perfect condition could not be prepared. The whole bull sperm and the bull sperm heads became oriented perpendicular to the magnetic fields (1.7 Tesla maximum), while the paramecium cilia became parallel to the magnetic fields (8 Tesla maximum). A whole bull sperm, a bull sperm head, and a paramecium cilium were photometrically studied to obtain deltachi for each, which were estimated to be 1 x 10(-19), 3 x 10(-19), and 2 x 10(-20) J/T(2), respectively. deltachi of a sperm flagellum was estimated from the measured value of deltachi of the paramecium cilium, which agrees well with the difference between deltachi of the whole sperm and the sperm head. Additionally, this difference of deltachi almost coincides with the deltachi values calculated from deltachi of tubulin, as well. If the magnetic effect on biological systems is solved and the magnetic orientation correlates with it, deltachi will become the quantitative index of the effect.  相似文献   

12.
X、Y精子分离纯度评价方法的研究进展   总被引:2,自引:0,他引:2  
郭家明  朱化彬  王栋  张林波  郝海生  杜卫华 《遗传》2008,30(9):1115-1120
对检测分析分离精液中X、Y精子纯度的方法进行了综述, 并将各种方法的原理、技术操作过程和方法的优缺点进行了比较分析。认为如能在技术上有所突破, 提高方法的灵敏度、精确性, 降低检测时间, 单精子巢式PCR方法将可能成为一种低成本、常规化的检测手段, 在精子分离方法优化研究中发挥更大的作用, 并推动其他单精子遗传检测技术取得新进展。  相似文献   

13.
李巍 《遗传》2008,30(9):1120-1120
对检测分析分离精液中X、Y精子纯度的方法进行了综述, 并将各种方法的原理、技术操作过程和方法的优缺点进行了比较分析。认为如能在技术上有所突破, 提高方法的灵敏度、精确性, 降低检测时间, 单精子巢式PCR方法将可能成为一种低成本、常规化的检测手段, 在精子分离方法优化研究中发挥更大的作用, 并推动其他单精子遗传检测技术取得新进展。  相似文献   

14.
Flow cytometric sexing of mammalian sperm   总被引:13,自引:0,他引:13  
Garner DL 《Theriogenology》2006,65(5):943-957
This review reexamines parameters needed for optimization of flow cytometric sexing mammalian sperm and updates the current status of sperm sexing for various species where this technology is currently being applied. Differences in DNA content have provided both a method to differentiate between these sex-determining gametes and a method to sort them that can be used for predetermining sex in mammals. Although the DNA content of all cells for each mammalian species is highly conserved, slight but measurable DNA content differences of sperm occur within species even among cattle breeds due to different sizes of Y-chromosomes. Most mammals produce flattened, oval-headed sperm that can be oriented within a sorter using hydrodynamic forces. Multiplying the percentage the difference in DNA content of the X- or Y-chromosome bearing sperm times the area of the flat profile of the sperm head gives a simple sorting index that suggests that bull and boar sperm are well suited for separation in a flow sorter. Successful sperm sexing of various species must take into account the relative susceptibilities of gametes to the stresses that occur during sexing. Sorting conditions must be optimized for each species to achieve acceptable sperm sexing efficiency, usually at 90% accuracy. In the commercial application of sperm sexing to cattle, fertility of sex-sorted bull sperm at 2 x 10(6)/dose remains at 70-80% of unsexed sperm at normal doses of 10 to 20 x 10(6) sperm. DNA content measurements have been used to identify the sex-chromosome bearing sperm populations with good accuracy in semen from at least 23 mammalian species, and normal-appearing offspring have been produced from sexed sperm of at least seven species.  相似文献   

15.
The only known and measurable difference between X- and Y-chromosome bearing spermatozoa is the small difference in their DNA content. The X sperm in the human carry 2.8% more DNA than the Y sperm, while in domestic livestock this difference ranges from 3.0 to 4.2%. The only successful sperm separation method, flow cytometric sorting, is based on this difference in DNA content. Using this technique, X and Y sperm populations with purities greater than 90% can be obtained. The number of spermatozoa that can be sorted in a given time period, however, is too low for application of this technique in routine artificial insemination. Therefore, the search for a marker other than DNA to differentiate between X and Y sperm remains of interest in order to develop a method for large scale X and Y sperm separation. The aim of the present study was to investigate whether porcine X and Y sperm contain some difference in their plasma membrane proteins. The flow cytometric sorting of sperm enabled a direct comparison of the proteins of the X and Y sperm populations High resolution two-dimensional (2-D) electrophoresis was used; however, adaptations were needed to enable its use for analysis of proteins of flow cytometrically sorted sperm, both in the sorting procedure, membrane protein solubilization, and in the 2-D electrophoresis. Up to 1,000 protein spots per gel could be detected and quantified. Comparison of the 2-D protein patterns revealed differences in protein spots between sperm of two individual boars. However, no differences in protein spots between the X and Y sperm fractions were found. These results provide additional support for the view that X- and Y-chromosome bearing spermatozoa are phenotypically identical, and cast doubt on the likelihood that a surface marker can provide a base for X and Y sperm separation. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
Intact, viable X and Y chromosome-bearing sperm populations of the rabbit were separated according to DNA content with a flow cytometer/cell sorter. Reanalysis for DNA of an aliquot from each sorted population showed purities of 86% for X-bearing sperm and 81% for Y-bearing sperm populations. Sorted sperm were surgically inseminated into the uterus of rabbits. From does inseminated with sorted X-bearing sperm, 94% of the offspring born were females. From does inseminated with sorted Y-bearing sperm from the same ejaculates, 81% of the offspring were males. The probability of the phenotypic sex ratios differing from 50:50 were p less than 0.0003 for X-sorted sperm and p less than 0.004 for Y-sorted sperm. Thus, the phenotypic sex ratio at birth was accurately predicted from the flow-cytometrically measured proportion of X- and Y-bearing sperm used for insemination.  相似文献   

18.
We investigated the development to the blastocyst and subsequent live-offspring stages of in vitro-matured bovine oocytes intracytoplasmically injected with flow cytometrically sorted bull sperm heads. Bull sperm heads, prepared by ultrasound sonication, were distinguished and sorted on the basis of their relative DNA contents using a flow cytometer/cell sorter modified for sorting sperm. By fluorescence in situ hybridization, the proportion of sperm confirmed as having Y specific DNA in the fraction sorted for the Y sperm was 82%. Injection with single sorted sperm heads of in vitro-matured oocytes (cultured for 24 h) resulted in 46.6% cleavage and 6.9% blastocyst development rates. Embryo transfer of 48 blastocysts (Days 7-8) to recipients (one per recipient) resulted in 20.8% pregnancy and 20.8% normal live offspring production rates. The birth of 8 male and 2 female calves represents an 80% sex preselection accuracy rate.  相似文献   

19.
Fugger EF 《Theriogenology》1999,52(8):1435-1440
Numerous methods to separate human X- and Y-bearing sperm have been reported with unconfirmed separation after DNA analysis and inconsistent birth results. Successful flow cytometric separation of sperm resulting in alteration of the sex ratio of young born has been demonstrated in several animal species. Flow cytometric separation of human X- and Y-bearing sperm (MicroSort) has been confirmed after DNA analysis by fluorescence in situ hybridization (FISH). Pregnancies and births have resulted from the use of MicroSort after intrauterine insemination (IUI), in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI).  相似文献   

20.
Very long-chain (C24 to C34) polyunsaturated fatty acids (VLCPUFA) are important constituents of sphingomyelin (SM) and ceramide (Cer) in testicular germ cells. In the present paper we focused on the SM and Cer and their fatty acids in spermatozoa and their main regions, heads and tails. In bull and ram spermatozoa, SM was the third most abundant phospholipid and VLCPUFA were the major acyl groups ( approximately 70%) of SM and Cer. In rat epididymal spermatozoa the SM/Cer ratio was low in the absence of and could be maintained high in the presence of the cation chelator EDTA, added to the medium used for sperm isolation. This fact points to the occurrence of an active divalent cation-dependent sphingomyelinase. Bull and rat sperm had an uneven head-tail distribution of phospholipid, with virtually all the VLCPUFA-rich SM located at the head, the lower SM content in the rat being determined by the lower sperm head/tail size ratio. Most of the SM from bull sperm heads was readily solubilized with 1% Triton X-100 at 4 degrees C. The detergent-soluble SM fraction was richer in VLCPUFA than the nonsoluble fraction and richer in saturated fatty acids. Cer was produced at the expense of SM, thus decreasing severalfold the SM/Cer ratio in rat spermatozoa incubated for 2 h in presence of the sperm-capacitating agents, calcium, bicarbonate, and albumin. The generation of Cer from SM in the sperm head surface may be an early step among the biochemical and biophysical changes known to take place in the spermatozoon in the physiological events preceding fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号