首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustered damages are formed in DNA by ionising radiation and radiomimetic anticancer agents and are thought to be biologically severe. 7,8-dihydro-8-oxoguanine (8-oxoG), a major DNA damage resulting from oxidative attack, is highly mutagenic leading to a high level of G·C→T·A transversions if not previously excised by OGG1 DNA glycosylase/AP lyase proteins in eukaryotes. However, 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell. The ability of yeast OGG1 to excise 8-oxoG was determined when another type of damage [dihydrothymine, uracil, 8-oxoG, abasic (AP) site or various types of single-strand breaks (SSBs)] is present on the complementary strand 1, 3 or 5 bases 5′ or 3′ opposite to 8-oxoG. Base damages have little or no influence on the excision of 8-oxoG by yeast OGG1 (yOGG1) whereas an AP site has a strong inhibitory effect. Various types of SSBs, obtained using either oligonucleotides with 3′- and 5′-phosphate termini around a gap or through conversion of an AP site with either endonuclease III or human AP endonuclease 1, strongly inhibit excision of 8-oxoG by yOGG1. Therefore, this large inhibitory effect of an AP site or a SSB may minimise the probability of formation of a double-strand break in the processing of 8-oxoG within clustered damages.  相似文献   

2.
A major DNA lesion induced by ionizing radiation and formed on removal of oxidized base lesions by various glycosylases is an apurinic/apyrimidinic site (AP site). The presence of an AP site within clustered DNA damage, induced following exposure to ionizing radiation or radiomimetic anticancer agents, may present a challenge to the repair machinery of the cell, if the major human AP endonuclease, HAP1, does not efficiently incise the AP site. In this study, specific oligonucleotide constructs containing an AP site located at several positions opposite to another damage [5,6-dihydrothymine (DHT), 8-oxoG, AP site, or various types of single strand breaks] on the complementary strand were used to determine the relative efficiency of the purified HAP1 protein in incising an AP site(s) from clustered DNA damage. A base damage (DHT and 8-oxoG) on the opposite strand has little or no influence on the rate of incision of an AP site by HAP1. In contrast, the presence of either a second AP site or various types of single strand breaks, when located one or three bases 3' to the base opposite to the AP site, has a strong inhibitory effect on the efficiency of incision of an AP site. The efficiency of binding of HAP1 to an AP site is reduced by approximately 1 order of magnitude if a single strand break (SSB) is located one or three bases 3' to the site opposite to the AP site on the complementary strand. If the AP site and either a SSB or a second AP site are located at any of the other positions relative to each other, a double strand break may result.  相似文献   

3.
In mammalian cells, repair of the most abundant endogenous premutagenic lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is initiated by the bifunctional DNA glycosylase OGG1. By using purified human proteins, we have reconstituted repair of 8-oxoG lesions in DNA in vitro on a plasmid DNA substrate containing a single 8-oxoG residue. It is shown that efficient and complete repair requires only hOGG1, the AP endonuclease HAP1, DNA polymerase (Pol) β and DNA ligase I. After glycosylase base removal, repair occurred through the AP lyase step of hOGG1 followed by removal of the 3′-terminal sugar phosphate by the 3′-diesterase activity of HAP1. Addition of PCNA had a slight stimulatory effect on repair. Fen1 or high concentrations of Pol β were required to induce strand displacement DNA synthesis at incised 8-oxoG in the absence of DNA ligase. Fen1 induced Pol β strand displacement DNA synthesis at HAP1-cleaved AP sites differently from that at gaps introduced by hOGG1/HAP1 at 8-oxoG sites. In the presence of DNA ligase I, the repair reaction at 8-oxoG was confined to 1 nt replacement, even in the presence of high levels of Pol β and Fen1. Thus, the assembly of all the core proteins for 8-oxoG repair catalyses one major pathway that involves single nucleotide repair patches.  相似文献   

4.
Abasic (AP) sites in DNA arise either spontaneously, or through glycosylase-catalyzed excision of damaged bases. Their removal by the base excision repair (BER) pathway avoids their mutagenic and cytotoxic consequences. XRCC1 coordinates and facilitates single-strand break (SSB) repair and BER in mammalian cells. We report that XRCC1, through its NTD and BRCT1 domains, has affinity for several DNA intermediates in BER. As shown by its capacity to form a covalent complex via Schiff base, XRCC1 binds AP sites. APE1 suppresses binding of XRCC1 to unincised AP sites however, affinity was higher when the DNA carried an AP-lyase- or APE1-incised AP site. The AP site binding capacity of XRCC1 is enhanced by the presence of strand interruptions in the opposite strand. Binding of XRCC1 to BER DNA intermediates could play an important role to warrant the accurate repair of damaged bases, AP sites or SSBs, in particular in the context of clustered DNA damage.  相似文献   

5.
Futile short-patch DNA base excision repair of adenine:8-oxoguanine mispair   总被引:4,自引:2,他引:2  
8-Oxo-7, 8-dihydrodeoxyguanosine (8-oxo-dG), one of the representative oxidative DNA lesions, frequently mispairs with the incoming dAMP during mammalian DNA replication. Mispaired dA is removed by post-replicative base excision repair (BER) initiated by adenine DNA glycosylase, MYH, creating an apurinic (AP) site. The subsequent mechanism ensuring a dC:8-oxo-dG pair, a substrate for 8-oxoguanine DNA glycosylase (OGG1), remains to be elucidated. At the nucleotide insertion step, none of the mammalian DNA polymerases examined exclusively inserted dC opposite 8-oxo-dG that was located in a gap. AP endonuclease 1, which possesses 3′→5′ exonuclease activity and potentially serves as a proofreader, did not discriminate dA from dC that was located opposite 8-oxo-dG. However, human DNA ligases I and III joined 3′-dA terminus much more efficiently than 3′-dC terminus when paired to 8-oxo-dG. In reconstituted short-patch BER, repair products contained only dA opposite 8-oxo-dG. These results indicate that human DNA ligases discriminate dC from dA and that MYH-initiated short-patch BER is futile and hence this BER must proceed to long-patch repair, even if it is initiated as short-patch repair, through strand displacement synthesis from the ligation-resistant dC terminus to generate the OGG1 substrate, dC:8-oxo-dG pair.  相似文献   

6.
Lomax ME  Cunniffe S  O'Neill P 《Biochemistry》2004,43(34):11017-11026
Ionizing radiation induces clustered DNA damage sites which have been shown to challenge the repair mechanism(s) of the cell. Evidence demonstrating that base excision repair is compromised during the repair of an abasic (AP) site present within a clustered damage site is presented. Simple bistranded clustered damage sites, comprised of either an AP-site and 8-oxoG or two AP-sites, one or five bases 3' or 5' to each other, were synthesized in oligonucleotides, and repair was carried out in xrs5 nuclear extracts. The rate of repair of an AP-site when present opposite 8-oxoG is reduced by up to 2-fold relative to that when an AP-site is present as an isolated lesion. The mechanism of repair of the AP-site shows asymmetry, depending on its position relative to 8-oxoG on the opposite strand. The AP-site is rejoined by short-patch base excision repair when the lesions are 5' to each other, whereas when the lesions are 3' to one another, rejoining of the AP-site occurs by both long-patch and short-patch repair processes. The major stalling of repair occurs at the DNA ligase step. 8-OxoG and an AP-site present within a cluster are processed sequentially, limiting the formation of double-strand breaks to <4%. In contrast, when two AP-sites are contained within the clustered DNA damage site, both AP-sites are incised simultaneously, giving rise to double-strand breaks. This study provides new insight into understanding the processes that lead to the biological consequences of radiation-induced DNA damage and ultimately tumorigenesis.  相似文献   

7.
Ionising radiation produces clustered DNA damage. Recent studies have established that the efficiency of excision of a lesion within clustered damage sites is reduced. This study presents evidence that the repair of clustered DNA damage is compromised, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to eight fold. Simple clustered damage sites, comprised of a single-strand break, one or five bases 3' or 5' to 8-oxoG on the opposite strand, were synthesised in oligonucleotides and repair carried out in XRS5 nuclear extracts. The rate of repair of the single-strand break within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase III/XRCC1 complex. The single-strand break, present as an isolated lesion, is repaired by short-patch base excision repair, however the mechanism of repair of the single-strand break within the clustered damage site is asymmetric. When the lesions are 5' to each other, the single-strand break is rejoined by short-patch repair whereas the rejoining of the single-strand break occurs by long-patch type repair when the lesions are 3' to one another. The retardation of DNA ligase III/XRCC1 complex, following addition of one base, is responsible for the initiation of long-patch base excision repair when the lesions are 3' to each other. The lesions within the cluster are processed sequentially, the single-strand break being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage is suggested to have implications for mutation induction by radiation.  相似文献   

8.
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.  相似文献   

9.
Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. The potential for genetic change arising from the effects of clustered damage sites containing combinations of AP sites, 8-oxo-7,8-dihydroguanine (8-oxoG) or 5,6-dihydrothymine is high. To date clusters containing a DNA base lesion that is a strong block to replicative polymerases, have not been explored. Since thymine glycol (Tg) is non-mutagenic but a strong block to replicative polymerases, we have investigated whether clusters containing Tg are highly mutagenic or lead to potentially cytotoxic lesions, when closely opposed to either 8-oxoG or an AP site. Using a bacterial plasmid-based assay and repair assays using cell extracts or purified proteins, we have shown that DNA double-strand breaks (DSBs) arise when Tg is opposite to an AP site, either through attempted base excision repair or at replication. In contrast, 8-oxoG opposite to Tg in a cluster ‘protects’ against DSB formation but does enhance the mutation frequency at the site of 8-oxoG relative to that at a single 8-oxoG, due to the decisive role of endonucleases in the initial stages of processing Tg/8-oxoG clusters, removing Tg to give an intermediate with an abasic site or single-strand break.  相似文献   

10.
A major DNA lesion is the strongly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) base, formed by oxidative attack at guanine and which leads to a high level of G.C-->T.A transversions. Clustered DNA damages are formed in DNA following exposure to ionizing radiation or radiomimetic anticancer agents and are thought to be biologically severe. The presence of 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell, if the OGG1 DNA glycosylase/AP lyase protein, present in eukaryotic cells, does not efficiently excise its substrate, 8-oxoG. In this study, specific oligonucleotide constructs containing an 8-oxoG located in several positions opposite to another damage (5,6-dihydrothymine (DHT), uracil, 8-oxoG, AP site, or various types of single strand breaks) were used to determine the relative efficiency of purified human OGG1 and mammalian XRS5 nuclear extracts to excise 8-oxoG from clustered damages. A base damage (DHT, uracil, and 8-oxoG) on the opposite strand has little or no influence on the rate of excision of 8-oxoG whereas the presence of either an AP site or various types of single strand breaks has a strong inhibitory effect on the formation of a SSB due to the excision of 8-oxoG by both hOGG1 and the nuclear extract. The binding of hOGG1 to 8-oxoG is not significantly affected by the presence of a neighboring lesion.  相似文献   

11.
The biological consequences of clusters containing a single strand break and base lesion(s) remain largely unknown. In the present study we determined the mutagenicities of two- and three-lesion clustered damage sites containing a 1-nucleotide gap (GAP) and 8-oxo-7,8-dihydroguanine(s) (8-oxoG(s)) in Escherichia coli. The mutation frequencies (MFs) of bi-stranded two-lesion clusters (GAP/8-oxoG), especially in mutY-deficient strains, were high and were similar to those for bi-stranded clusters with 8-oxoG and base lesions/AP sites, suggesting that the GAP is processed with an efficiency similar to the efficiency of processing a base lesion or an AP site within a cluster. The MFs of tandem two-lesion clusters comprised of a GAP and an 8-oxoG on the same strand were comparable to or less than the MF of a single 8-oxoG. The mutagenic potential of three-lesion clusters, which were comprised of a tandem lesion (a GAP and an 8-oxoG) and an opposing single 8-oxoG, was higher than that of a single 8-oxoG, but was no more than that of a bi-stranded 8-oxoGs. We suggest that incorporation of a nucleotide opposite 8-oxoG is less mutagenic when a GAP is present in a cluster than when a GAP is absent. Our observations indicate that the repair of a GAP is retarded by an opposing 8-oxoG, but not by a tandem 8-oxoG, and that the extent of GAP repair determines the biological consequences.  相似文献   

12.
Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1–2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1) decreased under AP site excursion to the 3''-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process.  相似文献   

13.
Cunniffe SM  Lomax ME  O'Neill P 《DNA Repair》2007,6(12):1839-1849
Ionizing radiation induces clustered DNA damaged sites, defined as two or more lesions formed within one or two helical turns of the DNA through passage of a single radiation track. It is now established that clustered DNA damage sites are found in cells and present a challenge to the repair machinery of the cell but to date, most studies have investigated the effects of bi-stranded lesions. A subset of clustered DNA damaged sites exist in which two or more lesions are present in tandem on the same DNA strand. In this study synthetic oligonucleotides containing an AP site 1, 3 or 5 bases 5' or 3' to 8-oxo-7,8-dihydroguanine (8-oxoG) on the same DNA strand were synthesized as a model of a tandem clustered damaged sites. It was found that 8-oxoG retards the incision of the AP site by exonuclease III (Xth) and formamidopyrimidine DNA glycosylase (Fpg). In addition the rejoining of the AP site by xrs5 nuclear extracts is impaired by the presence of 8-oxoG. The mutation frequency arising from 8-oxoG within a tandem clustered site was determined in both wild type and mutant E. coli backgrounds. In wild-type, nth, fpg and mutY null E. coli, the mutation frequency is slightly elevated when an AP site is in tandem to 8-oxoG, compared with when 8-oxoG is present as a single lesion. Interestingly, in the double mutant mutY/fpg null E. coli, the mutation frequency of 8-oxoG is reduced when an AP site is present in tandem compared with when 8-oxoG is present as a single lesion. This study demonstrates that tandem lesions can present a challenge to the repair machinery of the cell.  相似文献   

14.
Ionising radiation induces clustered DNA damage sites which pose a severe challenge to the cell’s repair machinery, particularly base excision repair. To date, most studies have focussed on two-lesion clusters. We have designed synthetic oligonucleotides to give a variety of three-lesion clusters containing abasic sites and 8-oxo-7, 8-dihydroguanine to investigate if the hierarchy of lesion processing dictates whether the cluster is cytotoxic or mutagenic. Clusters containing two tandem 8-oxoG lesions opposing an AP site showed retardation of repair of the AP site with nuclear extract and an elevated mutation frequency after transformation into wild-type or mutY Escherichia coli. Clusters containing bistranded AP sites with a vicinal 8-oxoG form DSBs with nuclear extract, as confirmed in vivo by transformation into wild-type E. coli. Using ung1 E. coli, we propose that DSBs arise via lesion processing rather than stalled replication in cycling cells. This study provides evidence that it is not only the prompt formation of DSBs that has implications on cell survival but also the conversion of non-DSB clusters into DSBs during processing and attempted repair. The inaccurate repair of such clusters has biological significance due to the ultimate risk of tumourigenesis or as potential cytotoxic lesions in tumour cells.  相似文献   

15.
The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.  相似文献   

16.
The X-ray repair cross-complementing group 1 (XRCC1) protein plays a central role in base excision repair (BER) interacting with and modulating activity of key BER proteins. To estimate the influence of XRCC1 on interactions of BER proteins poly(ADP-ribose) polymerase 1 (PARP1), apurinic/apyrimidinic endonuclease 1 (APE1), flap endonuclease 1 (FEN1), and DNA polymerase beta (Pol beta) with DNA intermediates, photoaffinity labeling using different photoreactive DNA was carried out in the presence or absence of XRCC1. XRCC1 competes with APE1, FEN1, and PARP1 for DNA binding, while Pol beta increases the efficiency of XRCC1 modification. To study the interactions of XRCC1 with DNA and proteins at the initial stages of BER, DNA duplexes containing a photoreactive group in the template strand opposite the damage were designed. DNA duplexes with 8-oxoguanine or dihydrothymine opposite the photoreactive group were recognized and cleaved by specific DNA glycosylases (OGG1 or NTH1, correspondingly), although the rate of oxidized base excision in the photoreactive structures was lower than in normal substrates. XRCC1 does not display any specificity in recognition of DNA duplexes with damaged bases compared to regular DNA. A photoreactive group opposite a synthetic apurinic/apyrimidinic (AP) site (3-hydroxy-2-hydroxymethyltetrahydrofuran) weakly influences the incision efficiency of AP site analog by APE1. In the absence of magnesium ions, i.e. when incision of AP sites cannot occur, APE1 and XRCC1 compete for DNA binding when present together. However, in the presence of magnesium ions the level of XRCC1 modification increased upon APE1 addition, since APE1 creates nicked DNA duplex, which interacts with XRCC1 more efficiently.  相似文献   

17.
DNA single-strand breaks containing 3′-8-oxoguanine (3′-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3′-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3′-8-oxoG inhibits ligation by DNA ligase IIIα or DNA ligase I, inhibits extension by DNA polymerase β and that the lesion is resistant to excision by DNA glycosylases involved in the repair of oxidative lesions in human cells. However, we find that purified human AP-endonuclease 1 (APE1) is able to remove 3′-8-oxoG lesions. By fractionation of human whole cell extracts and immunoprecipitation of fractions containing 3′-8-oxoG excision activity, we further demonstrate that APE1 is the major activity involved in the repair of 3′-8-oxoG lesions in human cells and finally we reconstituted repair of the 3′-8-oxoG-containing oligonucleotide duplex with purified human enzymes including APE1, DNA polymerase β and DNA ligase IIIα.  相似文献   

18.
Alternative excision repair (AER) is a category of excision repair initiated by a single nick, made by an endonuclease, near the site of DNA damage, and followed by excision of the damaged DNA, repair synthesis, and ligation. The ultraviolet (UV) damage endonuclease in fungi and bacteria introduces a nick immediately 5′ to various types of UV damage and initiates its excision repair that is independent of nucleotide excision repair (NER). Endo IV-type apurinic/apyrimidinic (AP) endonucleases from Escherichia coli and yeast and human Exo III-type AP endonuclease APEX1 introduce a nick directly and immediately 5′ to various types of oxidative base damage besides the AP site, initiating excision repair. Another endonuclease, endonuclease V from bacteria to humans, binds deaminated bases and cleaves the phosphodiester bond located 1 nucleotide 3′ of the base, leading to excision repair. A single-strand break in DNA is one of the most frequent types of DNA damage within cells and is repaired efficiently. AER makes use of such repair capability of single-strand breaks, removes DNA damage, and has an important role in complementing BER and NER.NER and base excision repair (BER) are the major excision repair pathways present in almost all organisms. In NER, dual incisions are introduced, the damaged DNA between the incised sites is then removed, and DNA synthesis fills the single-stranded gap, followed by ligation. In BER, an AP site, formed by depurination or created by a base damage-specific DNA glycosylase, is recognized by an AP endonuclease that introduces a nick immediately 5′ to the AP site, followed by repair synthesis, removal of the AP site, and final ligation. Besides these two fundamental excision repair systems, investigators have found another category of excision repair—AER—an example of which is the excision repair of UV damage, initiated by an endonuclease called UV damage endonuclease (UVDE). UVDE introduces a single nick immediately 5′ to various types of UV lesions as well as other types of base damage, and this nick leads to the removal of the lesions by an AER process designated as UVDE-mediated excision repair (UVER or UVDR). Genetic analysis in Schizosaccharomyces pombe indicates that UVER provides cells with an extremely rapid removal of UV lesions, which is important for cells exposed to UV in their growing phase.Endo IV–type AP endonucleases from Escherichia coli and budding yeast and the Exo III–type human AP endonuclease APEX1 are able to introduce a nick at various types of oxidative base damage and initiate a form of excision repair that has been designated as nucleotide incision repair (NIR). Endonuclease V (ENDOV) from bacteria to humans recognizes deaminated bases, introduces a nick 1 nucleotide 3′ of the base, and leads to excision repair initiated by the nick. These endonucleases introduce a single nick near the DNA-damage site, leaving 3′-OH termini, and initiate repair of both the DNA damage and the nick. The mechanisms of AER may be similar to those of single-strand break (SSB) repair or BER except for the initial nicking process. However, how DNA damage is recognized determines the repair process within the cell. This article discusses the mechanisms and functional roles of AER. We begin with AER of UV damage, because genetic analysis has shown functional differences between this AER and NER in S. pombe.  相似文献   

19.
Reactive oxygen species attack the structure of DNA, thus altering its base-pairing properties. Consequently, oxidative stress-associated DNA lesions are a major source of the mutation load that gives rise to cancer and other diseases. Base excision repair (BER) is the pathway primarily tasked with repairing DNA base damage, with apurinic/apyrimidinic endonuclease (APE1) having both AP-endonuclease and 3′ to 5′ exonuclease (exo) DNA cleavage functions. The lesion 8-oxo-7,8-dihydroguanine (8-oxoG) can enter the genome as either a product of direct damage to the DNA, or through polymerase insertion at the 3′-end of a DNA strand during replication or repair. Importantly, 3′-8-oxoG impairs the ligation step of BER and therefore must be removed by the exo activity of a surrogate enzyme to prevent double stranded breaks and cell death. In the present study, we use X-ray crystallography to characterize the exo activity of APE1 on 3′-8-oxoG substrates. These structures support a unified APE1 exo mechanism that differs from its more canonical AP-endonuclease activity. In addition, through complementation of the structural data with enzyme kinetics and binding studies employing both wild-type and rationally designed APE1 mutants, we were able to identify and characterize unique protein: DNA contacts that specifically mediate 8-oxoG removal by APE1.  相似文献   

20.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号