首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TsAF8 is a temperature-sensitive (TS) mutant of BHK21 cells that arrests at nonpermissive temperatures in the mid-G1 phase of the cell cycle. TsAmaR-1 is a TS for growth mutant of CHO cells with a Ts- and α-amanitin-resistant (AmaR) RNA polymerase II activity. Hybrid TsAmaR-1 x TsAF8 cell lines were constructed at permissive temperatures. Such hybrid cells did not grow at nonpermissive temperatures; the two TS mutations did not complement. Two different AmaR derivatives of TsAF8 were isolated. Each contained only AmaR polymerase II activity, indicating that this RNA polymerase II gene locus in TsAF8 is functionally hemizygous, as would be expected for a locus in which the recessive TsAF8 mutation had occurred. One of these AmaR isolates of TsAF8 had a partially reverted TS+ phenotype. Taken together these results suggest that the TS mutation in TsAF8 is in RNA polymerase II.  相似文献   

2.
A number of mutant Chinese hamster ovary (CHO) cell lines resistant to the cytotoxic action of alpha-amanitin have been isolated. The alpha-amanitin sensitivity of the different mutant cell lines varied widely, but correlated well with the alpha-amanitin sensitivity of the RNA polymerase II activity in each of these mutant cell lines. In comparison with the RNA polymerase II of wild-type cells, three mutants, Ama39, Ama6, and Amal, required respectively 2- to 3-fold, 8- to 10-fold, and about 800-fold higher concentrations of alpha-amanitin for inhibition of their polymerase II activity. Determination of the equilibrium dissociation constants (KD) for complexes between 0-[3H]methyl-demethyl-gamma-amanitin and RNA polymearse II indicated that differences in alpha-amanitin sensitivity were reflected in differences in the ability of the enzymes to bind amanitin. Hybrids formed by fusion of mutants with cells of wild-type sensitivity contained both mutant and wild-type polymerase II activities. Thus, each of the different alpha-amanitin resistance mutations was expressed co-dominantly. A test for complementation between two of these mutations by measurement of both the alpha-amanitin sensitivity and the [3H]amanitin binding by RNA polymerase II in Ama6 X Amal hybrid cells did not reveal any wild-type RNA polymerase II activity. These data provide evidence that the mutation to alpha-amanitin resistance involves structural changes in the gene coding for the alpha-amanitin binding subunit of RNA polymerase II. These changes appear to account for the alpha-amanitin-resistant phenotypes of these mutant cells.  相似文献   

3.
Cultures of the rat skeletal muscle myoblast cell line, L6, were treated with the mutagen ethylmethanesulfonate and grown in the presence of alpha-amanitin, an inhibitor of RNA polymerase II in vitro. One clonal cell line, Ama102, resistant tc the cytotoxic action of 2 mu-g/ml of alpha-amanitin was isolated and extensively characterized. Ama102 cells were about 30-fold more resistant to alpha-amanitin than their Ama+ parent cells based on a comparison of the concentration of alpha-amanitin required to reduce their plating efficiencies to similar extents. The RNA polymerase activities from Ama+ and Ama102 cells were solubilized and separated by DEAE-Sephadex chromatography. Whereas all of the Ama+ RNA polymerase II activity was inhibited by 0.1 mu-g/ml of alpha-amanitin, about 30% of the activity in the Ama102 RNA polymerase II peak was resistant to this concentration of alpha-amanitin and was inhibited only by much higher concentrations (25 mu-g/ml) of alpha-amanitin. This alpha-amanitin-resistant activity in Ama102 cells was identified as a bona fide RNA polymerase II by its chromatographic behavior on DEAE-Sephadex, salt optimum, preference for denatured DNA as template, insensitivity to inhibition by potassium phosphate, thermal inactivation kinetics, and inactivation by anti-RNA polymerase II antiserum. Both RNA polymerase IIa and IIb from Ama102 cells exhibited the partial alpha-amanitin resistance, as did this activity when purified further on phosphocellusose. Unlike the parental Ama+ cells, Ama102 cells neither fused at confluence nor showed an increase in the specific activity of creatine kinase. The altered sensitivity of the Ama102 RNA polymerase II to alpha-amanitin appears to account for the drug-resistant phenotype of these cells.  相似文献   

4.
5.
In an attempt to establish which RNA polymerase catalyzes the synthesis of the low molecular weight RNA components A, C and D, Ama 1 cells (mutant Chinese hamster cells) were used in experiments with addition of alpha-amanitin. Ama 1 cells contain an altered RNA polymerase II which is 800 times more resistant towards inhibition by alpha-amanitin than the wild type enzyme. Alpha-amanitin (up to 200 microgram/ml) added to these cells does not affect the synthesis of the low molecular weight RNAs A, C and D. These data together with our previous data showing that alpha-amanitin (0.5 - 5.0 microgram/ml) preferentially inhibits the synthesis of A, C and D in normal cells indicate that RNA polymerase II catalyzes the synthesis of the low molecular weight RNA components A, C and D.  相似文献   

6.
7.
The effects of IFN and mild hyperthermia on the responses of human promyelocytic HL-60 cells were investigated. Cells subjected to an elevated culture temperature (39.5 degrees-40.5 degrees C instead of 37 degrees C, herein referred to as heat-treated cells) showed an increase in heat shock proteins (HSPs) and corresponding mRNA synthesis, which were additionally potentiated by the presence of IFN. With cells cultured at 37 degrees C, IFN had no effect on HSP expression. The observed inhibition (40-70%) of RNA polymerase II-directed RNA synthesis (based on alpha-amanitin sensitivity) in isolated nuclei of heat-treated cells was also significantly reversed by the simultaneous addition of IFN. These data suggest that the IFN-amplified HSP gene expression may be involved in preventing irreversible damage or in fine tuning the recovery of mammalian cells from heat stress.  相似文献   

8.
9.
Clones resistant to the cytotoxic action of alpha-amanitin have been isolated from a strain of fetal human lung diploid fibroblasts. Resistant clones were recovered at a frequencey of 5 X 10(-8) after single-step selections following mutagenesis with the mutagen ethyl methane sulfonate. Following propagation in drug-free medium, the clones retained the selected phenotype and in both growth and plating experiments showed a 10-50-fold higher resistance than wild-type cells to the cytotoxicity of 0.25 microgram/ml alpha-amanitin. The alpha-amanitin sensitivity of RNA polymerase II purified from the mutant cells suggests the presence of two forms of the enzyme, one similar to that found in wild-type cells and a second form with increased resistance to alpha-amanitin inhibition. These results are consistent with previous evidence that alpha-amanitin resistance behaves as a codominant marker in mammalian cells.  相似文献   

10.
11.
12.
Our laboratory has developed methods for transient state kinetic analysis of human RNA polymerase II elongation. In these studies, multiple conformations of the RNA polymerase II elongation complex were revealed by their distinct elongation potential and differing dependence on nucleoside triphosphate substrate. Among these are conformations that appear to correspond to different translocation states of the DNA template and RNA-DNA hybrid. Using alpha-amanitin as a dynamic probe of the RNA polymerase II mechanism, we show that the most highly poised conformation of the elongation complex, which we interpreted previously as the posttranslocated state, is selectively resistant to inhibition with alpha-amanitin. Because initially resistant elongation complexes form only a single phosphodiester bond before being rendered inactive in the following bond addition cycle, alpha-amanitin inhibits elongation at each translocation step.  相似文献   

13.
DNA polymerase from BHK-21/C13 cells were separated into two species, DNA polymerase I corresponding to the heterogeneous enzyme with sedimentation coefficient of 6-8S, and DNA polymerase II, corresponding to the enzyme with sedimentation coefficient of 3.3S. DNA polymerase I was purified 114-fold and DNA polymerase II 154-fold by a simple extraction procedure followed by column chromatography on phosphocellulose and gel filtration through Sephadex G-100. The purified enzymes differed markedly in respect of pH optimum, stimulation and inhibition by K+, Km for the deoxyribonucleoside 5'-triphosphates, stability to heating at 45 degrees C, and inhibition by N-ethylmaleimide. The preferred primer-template for both enzymes was "activated" DNA (DNA submitted to limited degradation by pancreatic deoxyribonuclease); native or thermally denatured DNA templates were relatively very poorly copied. When certain synthetic templates were tested, substantial differences were revealed between the two enzymes. Poly[d(A-T)] was poorly used by polymerase I but was superior to "activated" DNA for polymerase II. Poly[d(A)]-oligo[d(pT)10] was used efficiently by polymerase I but not by polymerase II. Poly(A)-oligo[d(pT)10] was not an effective primer-template although polymerase I could use it to a limited extent when Mn2+ replaced Mg2+ in the polymerase reaction and when the temperature of incubation was lowered from 37 degrees to 30 degrees C. When only one or two or three triphosphates were supplied in the reaction mixture, the activity of polymerase I was more severly diminished than that of polymerase II.  相似文献   

14.
Spontaneous and EMS-induced alpha-amanitin-resistant CHO cells have been isolated and characterized. DNA-dependent RNA polymerase II in cell-free extracts from a mutant (ARM-1) was partially resistant to alpha-amanitin. Growing mutants for several generations in the presence or absence of alpha-amanitin did not change the pattern of inhibition. The mutants grew with a lag following transfer to medium with or without alpha-amanitin. The mutants have an altered RNA polymerase II, and possibly an altered cell membrane.  相似文献   

15.
Infection of Vero cells with herpes simplex virus type 1 results in the appearance in soluble extracts of a DNA primase activity. The partially purified enzyme, Mr, approximately 100,000, is identical in resistance to alpha-amanitin, pH profile, Mg2+ dependence, salt sensitivity, and KmATP to the catalytic core of Vero cell mitochondrial RNA polymerase. Moreover, the products synthesized are those expected of an RNA polymerase rather than a DNA primase. Inasmuch as the enzyme is not present in soluble extracts of uninfected Vero cells, we presume that the specific appearance of RNA polymerase in extracts of herpesvirus-infected cells results from infection-induced disruption of the mitochondrial membrane, followed by release of the enzyme into the cytosol.  相似文献   

16.
17.
18.
Spontaneous and EMS-induced alpha-amanitin-resistant Aedes albopictus cells have been isolated and characterized. Two mutant sublines, one of intermediate resistance (alpha A2) and the other highly resistant (Ama18) contained RNA polymerase II activity, the resistance of which in vitro to alpha-amanitin correlated well with the resistance of these cells in vivo. The resistance of these cells to alpha-amanitin can likely be attributed to the presence of an altered RNA polymerase II.  相似文献   

19.
Three DNA-dependent RNA polymerases have been isolated and partially purified from the mycelium of the fungus Podospora anserina. Separated by DEAE-Sephadex chromatography, they have been designated RNA polymerases I, II, and III according to their order of elution. Their catalytic properties and alpha-amanitin sensitivity are in agreement with those of the homologous enzymes found in other eukaryotic organisms. The three enzymes exhibit rather sharp monophasic ammonium sulfate dependence with optima which are, respectively, 0.035 M, 0.050 M, and 0.075 M. Enzyme I has the largest Mn2+/Mg2+ activity ratio, shows a marked preference for native DNA, and is insensitive to alpha-amanitin. Enzyme III uses poly(dA-dT) in preference to native DNA as template and is only partially sensitive to alpha-amanitin. Enzyme II is sensitive to alpha-amanitin, but high concentrations of the toxin are required for inhibition compared to other eukaryotic class II enzymes. Three similar RNA polymerases with comparable levels of activity were found in the temperature-dependent VR strain when cellular incompatibility, leading to a rapid cessation of RNA synthesis, was induced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号