首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pericellular region of the extracellular matrix (ECM) contains collagens, proteoglycans and other noncollagenous matrix proteins. Although such specialized pericellular ECM has been well studied in articular cartilage, little is known about the pericellular matrix in the disc. In the study reported here, pericellular matrix was studied in annulus tissue from 52 subjects ranging in age from 17-74 years. In aging/degenerating intervertebral discs, cells were identified that formed a distinctive cocoon of encircling pericellular ECM. Immunohistochemical studies identified types I, II, III and VI collagen in these pericellular sites with diverse morphological features. Similar types of changes in the pericellular matrix were observed in both surgical specimens and control donor discs. Results indicate the need for future studies to address why such specialized matrix regions form around certain disc cells and to determine the consequences of these unusual matrix regions on annular lamellar organization and function.  相似文献   

2.
Our objective for this study was to determine the presence and distribution of tenascin in the human intervertebral disc. The tenascins are a family of extracellular matrix proteins with repeated structural domains homologous to epidermal growth factor, fibronectin type III and the fibrinogens. Little is known about the presence of this protein in the disc. Ten normal human discs donated from subjects newborn to 15 years old, 10 control discs from adult donors aged 24-41 years, and 11 surgical disc specimens from patients aged 26-76 years were examined for immunolocalization of tenascin. In young discs, tenascin was localized throughout the annulus; in the nucleus, localization was confined to pericellular matrix. In adult control and degenerating disc specimens, tenascin in the annulus was localized primarily in pericellular matrix regions encircling either single cells or clusters of disc cells; in rare instances localization was more diffuse in the intraterritorial matrix. In young, healthy disc, tenascin was abundant throughout the annulus. In contrast, degenerating discs in adults showed a localization restricted to the pericellular, and rarely, more restricted intraterritorial matrix. These observations indicate that changes in the amount and distribution of tenascin may have a role in disc aging and degeneration, possibly by modulating fibronectin-disc-cell interactions, and causing alterations in the shape of disc cells.  相似文献   

3.
The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.  相似文献   

4.
We have generated a monoclonal antibody that recognizes a major component of a specialized extracellular matrix in Drosophila imaginal discs. In mature larvae, antibody binding is observed almost exclusively on imaginal discs. On the basal surface of the thoracic discs, the antigen is localized to particular regions of the epithelium, and ultrastructural studies indicate that the antigen is found in a fibrous network secreted between the cells and the basal lamina. The localized expression indicates that the matrix is not simply related to disc differentiation, as all regions of the columnar disc epithelium are determined to secrete adult cuticle. A correlation of the antigen distribution with known developmental events leads us to propose that the antigen-containing network provides an extensible matrix for the rapid elongation of the disc epithelium during evagination; consistent with this, the antigen is a component of the matrix between the dorsal and ventral surfaces of the evaginated wing pouch. The antigen is very large (greater than 5 X 10(5) Da), can be labeled metabolically with methionine and sulfate, and is digested by chondroitinase ABC; these biochemical characteristics indicate that the antigen is a proteoglycan.  相似文献   

5.
Experimental studies suggest that the magnitude of chondrocyte deformation is much smaller than expected based on the material properties of extracellular matrix (ECM) and cells, and that this result could be explained by a structural unit, the chondron, that is thought to protect chondrocytes from large deformations in situ. We extended an existing numerical model of chondrocyte, ECM and pericellular matrix (PCM) to include depth-dependent structural information. Our results suggest that superficial zone chondrocytes, which lack a pericellular capsule (PC), are relatively stiff, and therefore are protected from excessive deformations, whereas middle and deep zone chondrocytes are softer but are protected by the PC that limits cell deformations in these regions. We conclude that cell deformations sensitively depend on the immediate structural environment of the PCM in a depth-dependent manner, and that the functional stiffness of chondrocytes in situ is much larger than experiments on isolated cells would suggest.  相似文献   

6.
Within tendon, between collagen fascicles, cells are organized in linear arrays surrounded by a specialized environment of extracellular matrix (ECM) proteins that are largely unidentified. Our goal was to identify interfascicular, pericellular ECM components and provide additional resolution to the organization of the pericellular matrix. To this end, we employed a combination of enzymatic digestion, mechanical disruption, and differential sedimentation to demonstrate for the first time that it possible to liberate living linear tendon cell arrays from whole tendon. Here, we identify type VI collagen, versican, and fibrillin-2 as components of the immediate pericellular ECM of linearly arrayed tendon cells. Additionally, a unique fibrillin-2-containing macromolecular assembly is described in detail for the first time. This new structure is unlike any previously described fibrillin-containing macromolecular assembly. Having a largely constant diameter, it runs axially along tendon cell arrays and can exceed 1000 microm in length.  相似文献   

7.
ABSTRACT: BACKGROUND: In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following institutional review board approval. RESULTS: Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. CONCLUSIONS: Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.  相似文献   

8.
 Type X collagen has so far not been reported to occur in human intervertebral discs. The objective of this study was therefore to investigate the occurrence of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Ninety intervertebral discs with adjacent endplates were excised in toto from individuals (0–86 years) without known spinal disease and were processed for routine decalcified histology. Appropriate slices of each disc were processed for immunohistochemistry using a type-spec ific, monoclonal antibody raised against human type X collagen. Each intervertebral disc was examined for macroscopic and histomorphological features of disc degeneration. Immunohistochemically, a positive specific type X staining was observed in the hypertrophic zone of the growth plate and only in the interstitial matrix of juvenile (<2 years) nucleus pulposus. In adult discs, type X collagen could be localized in conjunction with advanced disc degeneration and first occurred in the disc matrix (i.e., pericellular region) of a 47-year-old specimen. Positive type X staining of the disc matrix was more frequently found in senile (>70 years) discs with end stages of disc degeneration. This study provides the first evidence for the occurrence of type X collagen in human lumbar intervertebral discs and it appears that type X collagen is re-expressed in late stages of disc degeneration. Accepted: 24 April 1997  相似文献   

9.
Several studies describing the ultrastructure and extracellular matrix (ECM) of intervertebral discs (IVDs) involve animal models and specimens obtained from symptomatic individuals during surgery for degenerative disease or scoliosis, which may not necessarily correlate to changes secondary to normal aging in humans. These changes may also be segment-specific based on different load patterns throughout life. Our objective was to describe the ECM and collagen profile of cervical IVDs in young (G1 - <35 years) and elderly (G2 - >65 years) presumably-asymptomatic individuals. Thirty cervical discs per group were obtained during autopsies of presumably-asymptomatic individuals. IVDs were analyzed with MRI, a morphological grading scale, light microscopy, scanning electron microscopy (SEM) and immunohistochemistry (IHC) for collagen types I, II, III, IV, V, VI, IX and X. Macroscopic degenerative features such as loss of annulus-nucleus distinction and fissures were found in both groups and significantly more severe in G2 as expected. MRI could not detect all morphological changes when compared even with simple morphological inspection. The loose fibrocartilaginous G1 matrix was replaced by a denser ECM in G2 with predominantly cartilaginous characteristics, chondrocyte clusters and absent elastic fibers. SEM demonstrated persistence of an identifiable nucleus and Sharpey-type insertion of cervical annulus fibers even in highly-degenerated G2 specimens. All collagen types were detected in every disc sector except for collagen X, with the largest area stained by collagens II and IV. Collagen detection was significantly decreased in G2: although significant intradiscal differences were rare, changes may occur faster or earlier in the posterior annulus. These results demonstrate an extensive modification of the ECM with maintenance of basic ultrastructural features despite severe macroscopic degeneration. Collagen analysis supports there is not a “pathologic” collagen type and changes are generally similar throughout the disc. Understanding the collagen and ultrastructural substrate of degenerative changes in the human disc is an essential step in planning restorative therapies.  相似文献   

10.
Functional imaging of pericellular proteolysis in cancer cell invasion   总被引:5,自引:0,他引:5  
Wolf K  Friedl P 《Biochimie》2005,87(3-4):315-320
Proteolytic interactions between cells and extracellular matrix (ECM) are involved in many physiological and pathological processes, such as embryogenesis, wound healing, immune response, and cancer. The visualization of cell-mediated proteolysis towards ECM is thus required to understand basic mechanisms of tissue formation and repair, such as the breakdown and structural remodelling of ECM, inflammatory changes of tissue integrity, and the formation of proteolytic trails by moving cells. A panel of synergistic techniques for the visualization of pericellular proteolysis in live and fixed samples allow monitoring the of proteolytic tumor cell invasion in three-dimensional (3D) fibrillar collagen matrices in vitro. These include the quantification of collagenolysis by measuring the release of collagen fragments, the detection of protease expression and local activity by dequenching of fluorogenic substrate, and the staining of cleavage-associated neoepitopes together with changes in matrix structure. In combination, these approaches allow the high-resolution mapping of pericellular proteolysis towards ECM substrata including individual focal cleavage sites and the interplay between cell dynamics and alterations in the tissue architecture.  相似文献   

11.
Abstract

Periostin, a matricellular protein in the fasciclin family, is expressed in tissues subjected to constant mechanical stress. Periostin modulates cell-to-extracellular matrix interactions and can bind to collagen, fibronectin, tenascin-C and several integrins. Our objective was to evaluate whether periostin is expressed in the human intervertebral disc. Immunohistochemical localization of periostin was carried out in tissue of human lumbar discs and lumbar discs of the sand rat (Psammomys obesus). Human discs also were examined for periostin gene expression. Immunohistochemical localization demonstrated periostin in the cytoplasm of annulus and nucleus cells, and occasionally in the surrounding pericellular and interterritorial extracellular matrix. Periostin distribution in the human disc was distinctive. Outer annulus contained the highest proportion of periostin-positive cells (88.8%), whereas inner annulus contained only 61.4%. The nucleus pulposus contained the fewest periostin-positive cells (18.5%). There was a significant negative correlation between the percentage of cells positive for periostin in the inner annulus and subject age. Periostin gene expression in the human disc also was confirmed using molecular microarray analysis. Because work by others has shown that periostin plays an important role in the biomechanical properties of other connective tissues (skin, tendon, heart valves), future research is needed to elucidate the role of periostin in disc, loading, aging and degeneration.  相似文献   

12.
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.  相似文献   

13.
Perlecan is a ubiquitous proteoglycan of basement membrane and vascularized tissues but is also present in articular cartilage, meniscus and intervertebral disc, which are devoid of basement membrane and predominantly avascular. It is a prominent pericellular proteoglycan in the transitory matrix of the cartilaginous rudiments that develop into components of diarthrodial joints and the axial skeleton, and it forms intricate perichondrial vessel networks that define the presumptive articulating surfaces of developing joints and line the cartilage canals in cartilaginous rudiments. Such vessels have roles in the nutrition of the expanding cell numbers in the developing joint. Perlecan sequesters a number of growth factors pericellularly (FGFs, PDGF, VEGF and CTGF) and through these promotes cell signalling, cell proliferation and differentiation. Perlecan also interacts with a diverse range of extracellular matrix proteins, stabilising and organising the ECM, and promoting collagen fibrillogenesis. Perlecan is a prominent pericellular component of mesenchymal cells from their earliest developmental stages through to maturation, forming cell-cell and cell-ECM interconnections that are suggestive of a role in mechanosensory processes important to tissue homeostasis.  相似文献   

14.
An extracellular matrix (ECM) lies between the upper and lower epithelial layers of the wing imaginal discs of moths. Organization and composition of this extracellular matrix, as revealed by staining with ruthenium red, tannic acid, and alcian blue, changes in concert with levels of hormones in the haemolymph. The ECM of the wing imaginal disc is an environment for cellular movements. Reorganization of the matrix and increase in ecdysteroid level is coupled with the proximal----distal migration of tracheal cells as well as the distal----proximal outgrowth of sensory neurons.  相似文献   

15.
The ECM of the intervertebral disc and articular cartilage contains a highly organised network of collagens and proteoglycans which resist compressive forces applied to these tissues. A pathological hallmark of the intervertebral disc is the imbalance between production of anabolic and catabolic factors by the resident cells. This process is thought to be mediated by pro-inflammatory cytokines, predominantly TNF-α and IL-1β, which upregulate expression of matrix degrading enzymes such as MMPs and ADAMTSs. This imbalance ultimately results in tissue degeneration causing failure of the biomechanical function of the tissues. A similar cascade of events is thought to occur in articular cartilage during development of osteoarthritis. Within these skeletal tissues a small, cell surface heparan sulphate proteoglycan; syndecan-4 (SDC4) has been implicated in maintaining physiological functions. However in the degenerating niche of the intervertebral disc and cartilage, dysregulated activities of this molecule may exacerbate pathological changes. Studies in recent years have elucidated a role for SDC4 in mediating matrix degradation in both intervertebral discs and cartilage by controlling ADAMTS-5 function and MMP3 expression. Discourse presented in this review highlights the potential of SDC4 as a possible therapeutic target in slowing the progression of ECM degradation in both degenerative disc disease and osteoarthritis.  相似文献   

16.
Type III collagen in the intervertebral disc.   总被引:1,自引:0,他引:1  
Several collagen types have now been isolated from the intervertebral disc, although type III collagen has previously only been extracted from human pathological disc. In this study, type III collagen has been isolated from normal human and bovine intervertebral disc and immunolocalized in sections of rat, sheep, bovine and 'normal' human intervertebral disc of various ages. Staining with antisera to type III collagen is localized primarily around the cells. Results indicate that cells of the disc sit in 'chondrons', similar to those seen in the deep and mid zones of articular cartilage. We suggest that type III collagen is present in the intervertebral disc and hypothesize that it may be involved in the organization of the pericellular environment, perhaps linking the chondron capsule to the interterritorial matrix.  相似文献   

17.
As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)-dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity.  相似文献   

18.
To determine the involvement of cathepsins G and L in the mechanism of spontaneous resorption of herniated intervertebral discs, localization of these cathepsins in this process was examined immunohistochemically using a rat model of autologous transplantation of coccygeal discs. Rat coccygeal discs were resected and autotransplanted into the subcutaneous space of the skin of the back. Paraffin-embedded sections of intervertebral disc tissue, harvested at various post-transplantational periods, were immunohistochemically stained with antibodies for cathepsin G, cathepsin L, MMP-1, MMP-3 and ED-2. The number of positive cells was counted in each part of the transplanted discs. Immunolocalization of cathepsins G and L in various types of disc cells was first observed early in the post-transplantation period. From two days after the operation, histology showed invasion by granulation tissue, with many macrophages, in all sections. Subsequently, the number of macrophages in granulation tissue was observed to increase, along with a gradual increase in the percentage of cells positive for MMP-1 and MMP-3. In addition to the ability of cathepsins G and L to degrade major extracellular matrix components of intervertebral discs, cathepsin G is capable of activating latent pro-MMPs. The up-regulation of cathepsins G and L in the intervertebral disc tissue in this spontaneous resorption model suggests that these proteinases may be involved in degradation of extracellular matrix, leading to the natural resorption of herniated discs.  相似文献   

19.
Matrix metalloproteinases (MMPs) are a group of structurally related proteolytic enzymes containing a zinc ion in the active site. They are secreted from cells or bound to the plasma membrane and hydrolyze extracellular matrix (ECM) and cell surface-bound molecules. They therefore play key roles in morphogenesis, wound healing, tissue repair and remodeling in diseases such as cancer and arthritis. Although the cell anchored membrane-type MMPs (MT-MMPs) function pericellularly, the secreted MMPs have been considered to act within the ECM, away from the cells from which they are synthesized. However, recent studies have shown that secreted MMPs bind to specific cell surface receptors, membrane-anchored proteins or cell-associated ECM molecules and function pericellularly at focussed locations. This minireview describes examples of cell surface and pericellular partners of MMPs, as well as how they alter enzyme function and cellular behaviour.  相似文献   

20.
Fibroblast-like cells in the synovial lining (type B lining cells), stroma and pannus tissue are targeted by many signals, such as the following: ligands binding to cell surface receptors; lipid soluble, small molecular weight mediators (eg nitric oxide [NO], prostaglandins, carbon monoxide); extracellular matrix (ECM)-cell interactions; and direct cell-cell contacts, including gap junctional intercellular communication. Joints are subjected to cyclic mechanical loading and shear forces. Adherence and mechanical forces affect fibroblasts via the ECM (including the hyaluronan fluid phase matrix) and the pericellular matrix (eg extracellular matrix metalloproteinase inducer [EMMPRIN]) matrices, thus modulating fibroblast migration, adherence, proliferation, programmed cell death (including anoikis), synthesis or degradation of ECM, and production of various cytokines and other mediators [1]. Aggressive, transformed or transfected mesenchymal cells containing proto-oncogenes can act in the absence of lymphocytes, but whether these cells represent regressed fibroblasts, chondrocytes or bone marrow stem cells is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号