首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila melanogaster flightless I gene is required for normal cellularization of the syncytial blastoderm. Highly conserved homologues of flightless I are present in Caenorhabditis elegans, mouse, and human. We have disrupted the mouse homologue Fliih by homologous recombination in embryonic stem cells. Heterozygous Fliih mutant mice develop normally, although the level of Fliih protein is reduced. Cultured homozygous Fliih mutant blastocysts hatch, attach, and form an outgrowing trophoblast cell layer, but egg cylinder formation fails and the embryos degenerate. Similarly, Fliih mutant embryos initiate implantation in vivo but then rapidly degenerate. We have constructed a transgenic mouse carrying the complete human FLII gene and shown that the FLII transgene is capable of rescuing the embryonic lethality of the homozygous targeted Fliih mutation. These results confirm the specific inactivation of the Fliih gene and establish that the human FLII gene and its gene product are functional in the mouse. The Fliih mouse mutant phenotype is much more severe than in the case of the related gelsolin family members gelsolin, villin, and CapG, where the homozygous mutant mice are viable and fertile but display alterations in cytoskeletal actin regulation.  相似文献   

2.
Morphogenesis of the Drosophila melanogaster embryo is associated with a dynamic reorganization of the actin cytoskeleton that is mediated by small GTPases of the Rho family. Often, Rho1 controls different aspects of cytoskeletal function in parallel, requiring a complex level of regulation. We show that the guanine triphosphate (GTP) exchange factor DRhoGEF2 is apically localized in epithelial cells throughout embryogenesis. We demonstrate that DRhoGEF2, which has previously been shown to regulate cell shape changes during gastrulation, recruits Rho1 to actin rings and regulates actin distribution and actomyosin contractility during nuclear divisions, pole cell formation, and cellularization of syncytial blastoderm embryos. We propose that DRhoGEF2 activity coordinates contractile actomyosin forces throughout morphogenesis in Drosophila by regulating the association of myosin with actin to form contractile cables. Our results support the hypothesis that specific aspects of Rho1 function are regulated by specific GTP exchange factors.  相似文献   

3.
discontinuous actin hexagon (dah) is a maternal-effect gene essential for the formation of cortical furrows during Drosophila embryogenesis, and DAH protein colocalizes with actin in these furrows. Biochemical fractionation experiments presented here demonstrate that DAH is highly enriched in the membrane fraction and that its membrane association is resistant to high-salt and alkaline washes. Furthermore, it partitions into the detergent phase of the Triton X-114 solution, indicating its tight binding to the membranes. DAH can also interact with the actin cytoskeleton, because a fraction of DAH remains insoluble to nonionic detergent along with actin. These biochemical characterizations suggest that DAH may play a role in the linkage of the actin cytoskeleton to membranes. Using phosphatase inhibitors, we detected multiple phosphorylated forms of DAH in embryonic extracts. The DAH phosphorylation peaks during cellularization, a stage at which DAH function is critical. A kinase activity is coimmunoprecipitated with the DAH complex and hyperphosphorylates DAH in vitro. Purified casein kinase I can also hyperphosphorylate DAH in the immune complex. Both DAH localization and phosphorylation are disrupted in another maternal-effect mutant, nuclear-fallout. It is possible that nuclear-fallout collaborates with dah and directs DAH protein localization to the cortical furrows.  相似文献   

4.
Developing tissues require cells to undergo intricate processes to shift into appropriate niches. This requires a functional connection between adhesion-mediating events at the cell surface and a cytoskeletal reorganization to permit directed movement. A small number of proteins are proposed to link these processes. Here, we identify one candidate, Cindr, the sole Drosophila melanogaster member of the CD2AP/CIN85 family (this family has been previously implicated in a variety of processes). Using D. melanogaster retina, we demonstrate that Cindr links cell surface junctions (E-cadherin) and adhesion (Roughest) with multiple components of the actin cytoskeleton. Reducing cindr activity leads to defects in local cell movement and, consequently, tissue patterning and cell death. Cindr activity is required for normal localization of Drosophila E-cadherin and Roughest, and we show additional physical and functional links to multiple components of the actin cytoskeleton, including the actin-capping proteins capping protein alpha and capping protein beta. Together, these data demonstrate that Cindr is involved in dynamic cell rearrangement in an emerging epithelium.  相似文献   

5.
F Jankovics  R Sinka  M Erdélyi 《Genetics》2001,158(3):1177-1188
Abdomen and germ cell development of Drosophila melanogaster embryo requires proper localization of oskar mRNA to the posterior pole of the developing oocyte. oskar mRNA localization depends on complex cell biological events like cell-cell communication, dynamic rearrangement of the microtubule network, and function of the actin cytoskeleton of the oocyte. To investigate the cellular mechanisms involved, we developed a novel interaction type of genetic screen by which we isolated 14 dominant enhancers of a sensitized genetic background composed of mutations in oskar and in TropomyosinII, an actin binding protein. Here we describe the detailed analysis of two allelic modifiers that identify Drosophila Rab11, a gene encoding small monomeric GTPase. We demonstrate that mutation of the Rab11 gene, involved in various vesicle transport processes, results in ectopic localization of oskar mRNA, whereas localization of gurken and bicoid mRNAs and signaling between the oocyte and the somatic follicle cells are unaffected. We show that the ectopic oskar mRNA localization in the Rab11 mutants is a consequence of an abnormally polarized oocyte microtubule cytoskeleton. Our results indicate that the internal membranous structures play an important role in the microtubule organization in the Drosophila oocyte and, thus, in oskar RNA localization.  相似文献   

6.
The early Drosophila embryo undergoes two distinct membrane invagination events believed to be mechanistically related to cytokinesis: metaphase furrow formation and cellularization. Both involve actin cytoskeleton rearrangements, and both have myosin II at or near the forming furrow. Actin and myosin are thought to provide the force driving membrane invagination; however, membrane addition is also important. We have examined the role of myosin during these events in living embryos, with a fully functional myosin regulatory light-chain-GFP chimera. We find that furrow invagination during metaphase and cellularization occurs even when myosin activity has been experimentally perturbed. In contrast, the basal closure of the cellularization furrows and the first cytokinesis after cellularization are highly dependent on myosin. Strikingly, when ingression of the cellularization furrow is experimentally inhibited by colchicine treatment, basal closure still occurs at the appropriate time, suggesting that it is regulated independently of earlier cellularization events. We have also identified a previously unrecognized reservoir of particulate myosin that is recruited basally into the invaginating furrow in a microfilament-independent and microtubule-dependent manner. We suggest that cellularization can be divided into two distinct processes: furrow ingression, driven by microtubule mediated vesicle delivery, and basal closure, which is mediated by actin/myosin based constriction.  相似文献   

7.
Embryonic development in Drosophila melanogaster begins with a rapid series of mitotic nuclear divisions, unaccompanied by cytokinesis, to produce a multi-nucleated single cell embryo, the syncytial blastoderm. The syncytium then undergoes a process of cell formation, in which the individual nuclei become enclosed in individual cells. This process of cellularization involves integrating mechanisms of cell polarity, cell-cell adhesion and a specialized form of cytokinesis. The detailed molecular mechanism, however, is highly complex and, despite extensive analysis, remains poorly understood. Nevertheless, new insights are emerging from recent studies on aspects of membrane polarization and insertion, which show that membrane components from intracellular organelles are involved. In addition, actin and actin-associated proteins have been heavily implicated while new evidence shows that microtubule cytoskeletal elements are mechanistically involved in all aspects of cellularization. This review will draw on both the traditional models and the new data to provide a current perspective on the nature of cellular blastoderm formation in Drosophila melanogaster.  相似文献   

8.
The septins are a conserved family of proteins that are involved in cytokinesis and other aspects of cell-surface organization. In Drosophila melanogaster, null mutations in the pnut septin gene are recessive lethal, but homozygous pnut mutants complete embryogenesis and survive until the pupal stage. Because the completion of cellularization and other aspects of early development seemed likely to be due to maternally contributed Pnut product, we attempted to generate embryos lacking the maternal contribution in order to explore the roles of Pnut in these processes. We used two methods, the production of germline clones homozygous for a pnut mutation and the rescue of pnut homozygous mutant flies by a pnut(+) transgene under control of the hsp70 promoter. Remarkably, the pnut germline-clone females produced eggs, indicating that stem-cell and cystoblast divisions in the female germline do not require Pnut. Moreover, the Pnut-deficient embryos obtained by either method completed early syncytial development and began cellularization of the embryo normally. However, during the later stages of cellularization, the organization of the actin cytoskeleton at the leading edge of the invaginating furrows became progressively more abnormal, and the embryos displayed widespread defects in cell and embryo morphology beginning at gastrulation. Examination of two other septins showed that Sep1 was not detectable at the cellularization front in the Pnut-deficient embryos, whereas Sep2 was still present in normal levels. Thus, it is possible that Sep2 (perhaps in conjunction with other septins such as Sep4 and Sep5) fulfills an essential septin role during the organization and initial ingression of the cellularization furrow even in the absence of Pnut and Sep1. Together, the results suggest that some cell-division events in Drosophila do not require septin function, that there is functional differentiation among the Drosophila septins, or both.  相似文献   

9.
Recent genetic manipulations have revealed that the cytoplasm of the early Drosophila embryo contains localized information that specifies the future embryonic axes. It is the restricted distribution or activity of particular gene products, either messenger RNA or protein, that is crucial for this specification. While some of the genes responsible for this information have been sequenced and the nature and distribution of their products examined, it is not known how this localization is established or maintained. The actin-based cytoskeleton is a likely candidate for the formation of a cytomatrix that would allow such distributions and yet no direct evidence has yet been found that implicates actin in positional cue localization. In this review I summarize what is known about actin filament behavior in Drosophila embryos and compare it to the distribution of positional cues. My purpose is to juxtapose these two bodies of information such that the relationship between them may be revealed.  相似文献   

10.
The Drosophila Formin Homology (FH) protein Diaphanous has an essential role during cytokinesis. To gain insight into the function of Diaphanous during cytokinesis and explore its role in other processes, we generated embryos deficient for Diaphanous and analyzed three cell-cycle-regulated actin-mediated events during embryogenesis: formation of the metaphase furrow, cellularization and formation of the pole cells. In dia embryos, all three processes are defective. Actin filaments do not organize properly to the metaphase and cellularization furrows and the actin ring is absent from the base of the presumptive pole cells. Furthermore, plasma membrane invaginations that initiate formation of the metaphase furrow and pole cells are missing. Immunolocalization studies of wild-type embryos reveal that Diaphanous localizes to the site where the metaphase furrow is anticipated to form, to the growing tip of cellularization furrows, and to contractile rings. In addition, the dia mutant phenotype reveals a role for Diaphanous in recruitment of myosin II, anillin and Peanut to the cortical region between actin caps. Our findings thus indicate that Diaphanous has a role in actin cytoskeleton organization and is essential for many, if not all, actin-mediated events involving membrane invagination. Based on known biochemical functions of FH proteins, we propose that Diaphanous serves as a mediator between signaling molecules and actin organizers at specific phases of the cell cycle.  相似文献   

11.
Microinjection of constitutively active Cdc42 (V12Cdc42) disrupts the actomyosin cytoskeleton during cellularization (Crawford et al., Dev. Biol., 204, 151-164 (1998)). The p21-activated kinase (PAK) family of Ser/Thr kinases are effectors of GTP-bound forms of the small GTPases, Cdc42 and Rac. Drosophila PAK, which colocalizes with actin and myosin-II during cellularization, concentrates at sites of V12Cdc42-induced actomyosin disruption. In vitro biochemical analyses demonstrate that PAK phosphorylates the regulatory light chain (RLC) of Drosophila nonmuscle myosin-II on Ser21, a site known to activate myosin-II function. Although activated PAK does not disrupt the actomyosin cytoskeleton, it induces increased levels of Ser21 phosphorylated RLC. These findings suggest that increased levels of RLC phosphorylation do not contribute to disruption of the actomyosin hexagonal array.  相似文献   

12.
Proteins that constitute the endosomal sorting complex required for transport (ESCRT) are necessary for the sorting of proteins into multivesicular bodies (MVBs) and the budding of several enveloped viruses, including HIV-1. The first of these complexes, ESCRT-I, consists of three proteins: Vps28p, Vps37p, and Vps23p or Tsg101 in mammals. Here, we characterize a mutation in the Drosophila homolog of vps28. The dVps28 gene is essential: homozygous mutants die at the transition from the first to second instar. Removal of maternally contributed dVps28 causes early embryonic lethality. In such embryos lacking dVps28, several processes that require the actin cytoskeleton are perturbed, including axial migration of nuclei, formation of transient furrows during cortical divisions in syncytial embryos, and the subsequent cellularization. Defects in actin cytoskeleton organization also become apparent during sperm individualization in dVps28 mutant testis. Because dVps28 mutant cells contained MVBs, these defects are unlikely to be a secondary consequence of disrupted MVB formation and suggest an interaction between the actin cytoskeleton and endosomal membranes in Drosophila embryos earlier than previously appreciated.  相似文献   

13.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

14.
We report the cDNA sequence and localization of a protein first identified by actin filament chromatography of Drosophila embryo extracts as ABP8 (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). The cDNA encodes a 1201-amino acid protein which we name anillin. Anillin migrates at 190 kD on SDS-PAGE. Anillin is expressed throughout Drosophila development and in tissue culture cells. By immunofluorescence, anillin localizes to the nucleus of interphase cells, except in the syncytial embryo where it is always cytoplasmic. During metaphase, it is present in the cytoplasm and cortex, and during anaphase-telophase it becomes highly enriched in the cleavage furrow along with myosin II. In the syncytial embryo, anillin, along with myosin-II, is enriched in cortical areas undergoing cell cycle regulated invagination including metaphase furrows and the cellularization front. In contractile rings, metaphase furrows, and nascent ring canals, anillin remains bound to the invaginated cortex suggesting a stabilizing role. Anillin is not expressed in cells that have left the cell cycle. Anillin isolated from embryo extracts binds directly to actin filaments. The domain responsible for this binding has been mapped to a region of 244 amino acids by expression of protein fragments in bacteria. This domain, which is monomeric in solution, also bundles actin filaments. We speculate that anillin plays a role in organizing and/or stabilizing the cleavage furrow and other cell cycle regulated, contractile domains of the actin cytoskeleton.  相似文献   

15.
16.
The tyrosine phosphorylation sites of the Disabled 1 (Dab1) docking protein are essential for the transmission of the Reelin signal, which regulates neuronal placement. Here we identify Nck beta as a phosphorylation-dependent, Dab1-interacting protein. The SH2 domain of Nck beta but not Nck alpha binds Dab1 phosphorylated on the Reelin-regulated site, Y220, or on Y232. Nck beta is coexpressed with Dab1 in the developing brain and in cultured neurons, where Reelin stimulation leads to the redistribution of Nck beta from the cell soma into neuronal processes. We found that tyrosine-phosphorylated Dab1 in synergy with Nck beta disrupts the actin cytoskeleton in transfected cells. In Drosophila melanogaster, exogenous expression of mouse Dab1 causes tyrosine phosphorylation site-dependent morphological changes in the compound eye. This phenotype is enhanced by overexpression of the Drosophila Nck protein Dock, suggesting a conserved interaction between the Disabled and Nck family members. We suggest a model in which Dab1 phosphorylation leads to the recruitment of Nck beta to the membrane, where it acts to remodel the actin cytoskeleton.  相似文献   

17.
18.
Amphiphysins, members of the BAR ( B in- A mphiphysin- R vsp) protein super family, have been postulated to play a key role in clathrin-mediated endocytosis of synaptic vesicles (SVs). This review focuses on recent genetic studies of the role of amphiphysins in SV recycling and membrane morphogenesis. In the mouse, brain-specific amphiphysin I and II regulate, but are not essential for, SV recycling. The role of this regulation appears important, as mice deficient in these proteins have seizures and are deficient in learning and memory. In the fruit fly Drosophila melanogaster , amphiphysin is found in muscles and is enriched at postsynaptic membranes of neuromuscular junctions (NMJs); however, it does not play a role in SV recycling. Rather, amphiphysin in fly muscles appears to regulate the organization and structure of the muscle T-tubule system and possibly the subsynaptic reticulum. Amphiphysin is also involved in membrane organization in both neurons and non-neuronal cells in Drosophila . These studies reveal pleiotropic functions for amphiphysins in clathrin-mediated endocytosis and the regulation of membrane dynamics, perhaps through the actin cytoskeleton.  相似文献   

19.
Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.  相似文献   

20.
The proto-oncogenic kinase Abelson (Abl) regulates actin in response to cell signaling. Drosophila Abl is required in the nervous system, and also in epithelial cells, where it regulates adherens junction stability and actin organization. Abl acts at least in part via the actin regulator Enabled (Ena), but the mechanism by which Abl regulates Ena is unknown. We describe a novel role for Abl in early Drosophila development, where it regulates the site and type of actin structures produced. In Abl's absence, excess actin is polymerized in apical microvilli, whereas too little actin is assembled into pseudocleavage and cellularization furrows. These effects involve Ena misregulation. In abl mutants, Ena accumulates ectopically at the apical cortex where excess actin is observed, suggesting that Abl regulates Ena's subcellular localization. We also examined other actin regulators. Loss of Abl leads to changes in the localization of the Arp2/3 complex and the formin Diaphanous, and mutations in diaphanous or capping protein beta enhance abl phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号