首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.  相似文献   

2.
The oxidative modification of low density lipoprotein (LDL) may play a significant role in atherogenesis. Tyrosyl radicals generated by myeloperoxidase (MPO) can act as prooxidants of LDL oxidation. Taking into consideration, that monophenolic compounds are able to form phenoxyl radicals in presence of peroxidases, we have tested salicylate, in its ability to act as a prooxidant in the MPO system. Measurement of conjugated dienes and lipid hydroperoxides were taken as indicators of lipid oxidation. Exposure of LDL preparations to MPO in presence of salicylate revealed that the drug could act as a catalyst of lipid oxidation in LDL. The radical scavenger ascorbic acid as well as heme poisons (cyanide, azide) and catalase were inhibitory. The main metabolite of salicylic acid, gentisic acid, showed inhibitory action in the MPO system. Even when lipid oxidation was maximally stimulated by salicylate the LDL oxidation was efficaciously counteracted in presence of gentisic acid at salicylate/gentisic acid ratios that could be reached in plasma of patients receiving aspirin medication. Gentisic acid was also able to impair the tyrosyl radical catalyzed LDL peroxidation. The results suggest that salicylate could act like tyrosine via a phenoxyl radical as a catalyst of LDL oxidative modification by MPO. But the prooxidant activity of this radical species is effectively counteracted by the salicylate metabolite gentisic acid.  相似文献   

3.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

4.
The development of myeloperoxidase (MPO) inhibitors has been conducted using flufenamic acid as a lead compound. Computational docking of the drug and its analogs in the MPO active site was first attempted. Several molecules were then synthesized and assessed using three procedures for the measurement of their inhibiting activity: (i) the taurine assay, (ii) the accumulation of compound II, and (iii) the LDL oxidation by ELISA. Most of the synthesized molecules had an activity in the same range as flufenamic acid but none of them were able to inhibit the MPO-dependent LDL oxidation. The experiments however gave some useful indications for a rational conception of MPO inhibitors.  相似文献   

5.
6.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, catalyzes the oxidation of halides to hypohalous acids. At plasma concentrations of halides, hypochlorous acid (HOCl) is the major strong oxidant produced. In contrast, the related enzyme eosinophil peroxidase preferentially generates hypobromous acid (HOBr). Since reagent and MPO-derived HOCl converts low-density lipoprotein (LDL) to a potentially atherogenic form, we investigated the effects of HOBr on LDL modification. Compared to HOCl, HOBr caused 2-3-fold greater oxidation of tryptophan and cysteine residues of the protein moiety (apoB) of LDL and 4-fold greater formation of fatty acid halohydrins from the lipids in LDL. In contrast, HOBr was 2-fold less reactive than HOCl with lysine residues and caused little formation of N-bromamines. Nevertheless, HOBr caused an equivalent increase in the relative electrophoretic mobility of LDL as HOCl, which was not reversed upon subsequent incubation with ascorbate, in contrast to the shift in mobility caused by HOCl. Similar apoB modifications were observed with HOBr generated by MPO/H(2)O(2)/Br(-). In the presence of equivalent concentrations of Cl(-) and Br(-), modifications of LDL by MPO resembled those seen in the presence of Br(-) alone. Interestingly, even at physiological concentrations of the two halides (100 mM Cl(-), 100 microM Br(-)), MPO utilized a portion of the Br(-) to oxidize apoB cysteine residues. MPO also utilized the pseudohalide thiocyanate to oxidize apoB cysteine residues. Our data show that even though HOBr has different reactivities than HOCl with apoB, it is able to alter the charge of LDL, converting it into a potentially atherogenic particle.  相似文献   

7.
Hypochlorite (HOCl), the product of the activated myeloperoxidase/H2O2/chloride (MPO/H2O2/Cl) system is favored as a trigger of LDL modifications, which may play a pivotal role in early atherogenesis. As HOCl has been shown to react with thiol-containing compounds like glutathione and N-acetylcysteine protecting LDL from HOCl modification, we have tested the ability of hydrogen sulfide (H2S)—which has recently been identified as an endogenous vasorelaxant—to counteract the action of HOCl on LDL. The results show that H2S could inhibit the atherogenic modification of LDL induced by HOCl, as measured by apolipoprotein alterations. Beside its HOCl scavenging potential, H2S was found to inhibit MPO (one may speculate that this occurs via H2S/heme interaction) and destroy H2O2. Thus, H2S may interfere with the reactants and reaction products of the activated MPO/H2O2/Cl system. Our data add to the evidence of an anti-atherosclerotic action of this gasotransmitter taking the role of HOCl in the atherogenic modification of LDL into account.  相似文献   

8.
Effect of dimethylthiourea on the neutrophil myeloperoxidase pathway   总被引:1,自引:0,他引:1  
The sulfur-centered compound dimethylthiourea (DMTU) affords antioxidant protection in animal models of acute lung injury, an effect that has been attributed to its OH. scavenging properties. Although DMTU can also react with H2O2 in certain experimental systems, the effect of DMTU on the neutrophil myeloperoxidase (MPO) pathway has not been studied. DMTU (1-10 mM) completely blocked stable oxidants and hypochlorous acid formation by phorbol myristate acetate- and zymosan-stimulated neutrophils. DMTU also provided complete inhibition when incubated with cell-free supernatants after the formation of the MPO products. DMTU prevented the oxidative inactivation of alpha 1-antitrypsin by neutrophil-stable oxidants. Evidence that DMTU was oxidized by the MPO products was obtained by titration of oxidized DMTU with reduced glutathione. Surprisingly, supernatants from cells incubated with DMTU (10 mM) consumed two- to threefold higher amounts of reduced glutathione than supernatants from cells incubated with taurine (15 mM). Metabolic studies with stimulated neutrophils and experiments with the MPO enzyme system in a cell-free system suggested that DMTU acts by scavenging the products of the MPO pathway rather than by blocking H2O2 production in the intact cell. These findings demonstrate that DMTU blocks the neutrophil MPO pathway in addition to its known ability to scavenge other reactive O2 species. The capacity of DMTU to scavenge MPO products may explain some of its protective effects in acute lung injury.  相似文献   

9.
We investigated the effects of N-acetylcysteine (NAC) pretreatment on paraquat-induced lung inflammation and leak. We found that administering a single intravenous dose (60 mg/kg) of paraquat rapidly (2 h) increased lung leak, lung lavage cytokine-induced neutrophil chemoattractant (CINC) levels, and lung myeloperoxidase (MPO) activity in rats. Rats pretreated with NAC (150 mg/kg, intraperitoneally) had increased lung tissue glutathione (GSH + GSSG) levels compared to saline-pretreated rats. In addition, rats pretreated with NAC and then given paraquat 2.5 h later had decreased lung leak compared to saline-pretreated rats given paraquat. In contrast, NAC pretreated rats given paraquat had the same lung lavage CINC levels and lung tissue MPO activity as saline-pretreated rats given paraquat. Our results indicate that paraquat causes an oxidative injury which may be decreased by the GSH-increasing or other properties of NAC.  相似文献   

10.
Vascular NAD(P)H oxidase activity contributes to oxidative stress. Thiol oxidants inhibit leukocyte NADPH oxidase. To assess the role of reactive thiols on vascular oxidase, rabbit iliac/carotid artery homogenates were incubated with distinct thiol reagents. NAD(P)H-driven enzyme activity, assessed by lucigenin (5 or 250 microM) luminescence, was nearly completely (> 97%) inhibited by the oxidant diamide (1mM) or the alkylator p-chloromercuryphenylsulfonate (pCMPS, 0.5mM). Analogous inhibition was also shown with EPR spectroscopy using DMPO as a spin trap. The oxidant dithionitrobenzoic acid (0.5mM) inhibited NADPH-driven signals by 92% but had no effect on NADH-driven signals. In contrast, the vicinal dithiol ligand phenylarsine oxide (PAO, 1 microM) induced minor nonsignificant inhibition of NADPH-driven activity, but significant stimulation of NADH-triggered signals. The alkylator N-ethyl maleimide (NEM, 0.5mM) or glutathione disulfide (GSSG, 3mM) had no effect with each substrate. Coincubation of N-acetylcysteine (NAC, 3mM) with diamide or pCMPS reversed their inhibitory effects by 30-60%, whereas NAC alone inhibited the oxidase by 52%. Incubation of intact arterial rings with the above reagents disclosed similar results, except that PAO became inhibitor and NAC stimulator of NADH-driven signals. Notably, the cell-impermeant reagent pCMPS was also inhibitory in whole rings, suggesting that reactive thiol(s) affecting oxidase activity are highly accessible. Since lack of oxidase inhibition by NEM or GSSG occurred despite significant cellular glutathione depletion, change in intracellular redox status is not sufficient to account for oxidase inhibition. Moreover, the observed differences between NADPH and NADH-driven oxidase activity point to complex or multiple enzyme forms.  相似文献   

11.
The aim of this investigation was to compare an improved fluorometric method with an UV absorbance assay for their ability to monitor low density lipoprotein (LDL) modification by myeloperoxidase (MPO) and to evaluate determining factors influencing the modification of LDL. Using absorbance at 234 nm to study the kinetics of LDL aggregation, and a native fluorescence assay for protein oxidation, we found that all components of the MPO/H2O2/Cl- system may have rate determining effects on LDL modification. While the lipoprotein modification rate correlated positively with enzyme concentration, variation of the concentration of H2O2 had a biphasic effect on the maximal rate of LDL modification with both methods. Furthermore, a positive association was found between the maximal rate of LDL modification and the acidity of the medium, with a pathophysiologically relevant optimal rate at a slightly acidic pH of 5-6, but hardly any modification above pH 6.8. In summary, both methods provide simple and useful tools for the continuous monitoring of LDL modification by the MPO/H2O2/Cl- system, but the more sensitive fluorometric method is preferable, since it allows the application of experimental conditions which are much closer to the situation in vivo.  相似文献   

12.
Low density lipoproteins (LDL) of human blood, once oxidized, provoke cholesterol accumulation in cells of arterial wall, which favors the development of atherosclerosis. Oxidative modification of LDL can result from their interaction with hypochlorous acid produced in the halogenation cycle of myeloperoxidase (MPO). On account that MPO is able to form complexes with LDL it seems important to learn the forces promoting such contacts and to spot the likely binding sites for the enzyme on the surface of LDL particles. In this study affinity chromatography on MPO-Sepharose showed that MPO-LDL complexes are uncoupled at ionic strength above 0.3 M NaCl or when pH of solution goes below 3.6. This is an evidence of ionic interaction between MPO and LDL. We used spin probes of lipid nature embedded in phospholipid monolayer so that a variety of distances between the surface of an LDL particle and the paramagnetic center of a spin probes was provided. Since MPO interaction with labeled LDL caused no alteration of EPR spectra it was concluded that lipid components of LDL are not involved in MPO binding. Analysis of Mn2+ distribution between LDL surface and the aqueous milieu showed that the surface negative charge of LDL is not considerably changed upon interaction with MPO. It can be suggested that interaction of LDL with MPO does not involve phospholipids that are the principal carriers of the surface charge. Among synthetic oligopeptides with amino acid sequences mimicking those of apoB-100 fragments – 1EEEMLEN7, 53VELEVPQ59 and 445EQIQDDCTGDED456 – only the latter could replace MPO in the complex with LDL. It is concluded that the likely site of interaction with MPO is the amino acid stretch 445–456 of apoB-100 in LDL.  相似文献   

13.
14.
It has been suggested that the oxidative modification of low density lipoprotein (LDL) is a key event in atherogenesis. Several mechanisms have been proposed to explain how different types of cells modify LDL. In this study we examine the relative contributions of superoxide anions and cellular lipoxygenase (LO) in the modification of LDL by macrophages. Superoxide dismutase (SOD) inhibited LDL oxidation by macrophages but only by 25%. Under the same conditions, several LO inhibitors (eicosatetraynoic acid (ETYA), piriprost, and A-64077) almost completely inhibited the modification of LDL by macrophages. SOD had a greater inhibitory effect on the modification of LDL by U937 cells and fibroblasts (32% and 64%, respectively) but again LO inhibitors had a much greater effect (79 to 100% inhibition). Incubation of [1-14C]linoleic acid with mouse peritoneal macrophages resulted in its conversion to a single more polar product coeluting with 13- and 9-HODE by reverse phase HPLC. When the cells were preincubated with LO inhibitors, formation of this product was significantly inhibited. It is concluded that the modification of LDL by macrophages is mediated in large part by lipoxygenase-type activity.  相似文献   

15.
In this study, the production of the highly toxic oxidant hypochlorous acid (HOCl) by the phagocytic enzyme myeloperoxidase (MPO) was quantitated and the concomitant alterations of low density lipoprotein (LDL) were analyzed in view of the potential role of LDL in atherosclerosis. Using the monochlorodimedone assay, it was found that HOCl is produced in micromolar concentrations. The kinetics of the decrease of tryptophan fluorescence appeared to be a sensitive method to monitor LDL alterations under near in vivo conditions. Therefore, this method was used to subsequently compare the effectiveness of MPO inhibitors that block production of HOCl with compounds that act as HOCl traps. The efficiency of MPO inhibitors to prevent LDL damage increased in the series benzohydroxamic acid < salicylhydroxamic acid < 3-amino-1,2,4-triazole < sodium azide < potassium cyanide < p-hydroxy-benzoic acid hydrazide, while for the HOCl traps the protective efficiency increased in the series glycine < taurine < methionine. We conclude that HOCl traps may have high potential therapeutic impact in vivo due to their low toxicity, although high concentrations of them would have to reach sites of inflammation. In contrast, only low concentrations of a specific MPO inhibitor would be required to irreversibly inhibit the enzyme.  相似文献   

16.
The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation.  相似文献   

17.
Recently, gamma-glutamyl transpeptidase, which initiates cleavage of extracellular glutathione, has been shown to promote oxidative damage to cells. Here we examined a murine disease model of glomerulosclerosis, involving loss of the Mpv17 gene coding for a peroxisomal protein. In Mpv17-/- cells, enzyme activity and mRNA expression (examined by quantitative RT-PCR) of membrane-bound gamma-glutamyl transpeptidase were increased, while plasma glutathione peroxidase and superoxide dismutase levels were lowered. Superoxide anion production in these cells was increased as documented by electron spin resonance spectroscopy. In the presence of Mn(III)tetrakis(4-benzoic acid)porphyrin, the activities of gamma-glutamyl transpeptidase and plasma glutathione peroxidase were unchanged, suggesting a relationship between enzyme expression and the amount of reactive oxygen species. Inhibition of gamma-glutamyl transpeptidase by acivicin reverted the lowered plasma glutathione peroxidase and superoxide dismutase activities, indicating reciprocal control of gene expression for these enzymes.  相似文献   

18.
A decline in reduced glutathione (GSH) level is associated with aging and free radical mediated diseases. The objective of this study was to determine whether the chronic depletion of extra cellular GSH causes oxidative damage to the circulating macromolecules such as lipoproteins. Decreased concentrations of plasma glutathione, vitamin E and ascorbic acid were recorded in the rats treated with buthionine sulfoximine (BSO), a selective GSH inhibitor. In LDL isolated from BSO-treated animals, the concentration of malondialdehyde (MDA) and conjugated dienes were significantly increased (P<0.01), whereas the levels of vitamin E were decreased (P<0.01). The analysis of total and LDL cholesterol revealed significant changes between the control and experimental groups. Of interest, altered concentrations of lyso-phosphatidyl choline (Lyso-PC) and phosphatidyl choline (PC) were recorded from the BSO mediated minimally modified LDL. A negative correlation between LDL-BDC/MDA and its antioxidant capacity was noted. Upon in vitro oxidation with CuSO(4), the electrophoretic behavior of purified LDL-apoprotein-B on agarose gel showed an increased mobility in BSO-treated rats, indicative of in vivo modification of LDL to become susceptible for in vitro oxidation. The increased mobility of LDL (after in vitro oxidation) isolated from the BSO-treated animals correlates with a decrease in its amino groups, as determined by the trinitrobenzene sulfonic acid (TNBS) reactants. However, the mobility of LDL molecule was not altered due to BSO treatment in vivo. Interestingly, the minimal modification on LDL does not lead to any vascular damage in the dorsal aorta of the rats injected with BSO. The administration of glutathione monoester (GME), at a dose of 5 mmol/kg body weight, twice a day, for 30 days, to animals treated with l-buthionine-SR-sulfoximine (BSO, 4 mmol/kg body weight, twice a day, for 30 days) normalized the antioxidant status and prevented the minimal modifications on LDL. Thus, increasing the cellular GSH levels may trigger beneficial effects against oxidative stress.  相似文献   

19.
Left ventricular (LV) dysfunction is a common comorbidity in diabetic patients, although the molecular mechanisms underlying this cardiomyopathic feature are not completely understood. Aldehyde dehydrogenase 2 (ALDH2) has been considered a key cardioprotective enzyme susceptible to oxidative inactivation. We hypothesized that hyperglycemia-induced oxidative stress would influence ALDH2 activity, and ALDH2 inhibition would lead to cardiac functional alterations in diabetic rats. Diabetes was induced by intraperitoneal (i.p.) injection of 60 mg/kg streptozotocin. Rats were divided randomly into four groups: control, untreated diabetic, diabetic treated with N-acetylcysteine (NAC) and diabetic treated with α-lipoic acid (α-LA). Cardiac contractile function, oxidative stress markers and reactive oxygen species (ROS) levels were assessed. ALDH2 activity and expression also were determined. The role of ALDH2 activity in change in hyperglycemia-induced mitochondrial membrane potential (Δψ) was tested in cultured neonatal cardiomyocytes. Myocardial MDA content and ROS were significantly higher in diabetic rats than in controls, whereas GSH content and Mn-SOD activity were decreased in diabetic rats. Compared with controls, diabetic rats exhibited significant reduction in LV ejection fraction and fractional shortening, accompanied by decreases in ALDH2 activity and expression. NAC and α-LA attenuated these changes. Mitochondrial Δψ was decreased greatly with hyperglycemia treatment, and high glucose combined with ALDH2 inhibition with daidzin further decreased Δψ. The ALDH2 activity can be regulated by oxidative stress in the diabetic rat heart. ALDH2 inhibition may be associated with LV reduced contractility, and mitochondrial impairment aggravated by ALDH2 inhibition might reflect an underlying mechanism which causes cardiac dysfunction in diabetic rats.  相似文献   

20.
The aim of this study was to follow up whether the modification of pro-antioxidant status by 8-day oral application of N-acetylcysteine (NAC) in healthy men affects the haematological response, whether there is a direct relationship between antioxidant defences and erythropoietin (EPO) secretion and whether NAC intake enhances exercise performance. Fifteen healthy men were randomly assigned to one of two groups: control or NAC (1,200 mg d−1 for 8 days prior to and 600 mg on the day of exercise trial). To measure the ergogenic effectiveness of NAC, subjects performed incremental cycle exercise until exhaustion. NAC administration significantly influenced the resting and post-exercise level of glutathione (+31%) as well as the resting activity of glutathione enzymes (glutathione reductase, −22%; glutathione peroxidase, −18%). The oxidative damage markers, i.e., protein carbonylation and lipid peroxidation products (thiobarbituric acid reactive substance) were reduced by NAC by more than 30%. NAC noticeably affected the plasma level of EPO (+26%), haemoglobin (+9%), haematocrit (+9%) and erythrocytes (−6%) at rest and after exercise. The mean corpuscular volume and the mean corpuscular haemoglobin increased by more than 12%. Plasma total thiols increased by 17% and directly correlated with EPO level (r = 0.528, P < 0.05). NAC treatment, contrary to expectations, did not significantly affect exercise performance. Our study has shown that 8-day NAC intake at a daily dose of 1,200 mg favours a pro-antioxidant status and affects haematological indices but does not enhance exercise performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号