首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified DNA from wild-type Chinese ovary (CHO) cells has been used to transform three hypoxanthine phosphoribosyltransferase (HPRT) deficient murine cell mutants to the enzyme positive state. Transformants appeared at an overall frequency of 5 x 10(-8) colonies/treated cell and expressed CHO HPRT activity as determined by electrophoresis. One gene recipient, B21, was a newly isolated mutant of LMTK- deficient in both HPRT and thymidine kinase (TK) activities. Transformation of B21 to HPRT+ occurred at 1/5 the frequency of transformation to TK+; the latter was, in turn, an order of magnitude lower than that found in the parental LMTK- cells, 3 x 10(-6). Thus both clonal and marker-specific factors play a role in determining transformability. The specific activity of HPRT in transformant extracts ranged from 0.5 to 5 times the CHO level. The rate of loss of the transformant HPRT+ phenotype, as measured by fluctuation analysis, was 10(-4)/cell/generation. While this value indicates stability compared to many gene transferents, it is much greater than the spontaneous mutation rate at the indigenous locus. The ability to transfer the gene for HPRT into cultured mammalian cells may prove useful for mutational and genetic mapping studies in this well-studied system.  相似文献   

2.
A comparative study on the biological responses to different mutagens (UV, 4NQO, MMC, MMS and EMS) was made on CHO wild-type cells (CHO-9), its UV-hypersensitive mutant 43-3B, and 2 types of its transferants, i.e., one containing a few copies of the human repair gene ERCC-1 and the other having more than 100 copies of ERCC-1 (due to gene amplification). Cell survival, chromosomal aberrations and SCEs were used as biological end-points. The spontaneous frequency of chromosomal aberrations in the transferants was less than found in 43-3B mutant cells, but still 2-3 times higher than in wild-type CHO cells. The spontaneous frequency of SCEs in the transferants was less than in 43-3B and similar to that of wild-type cells. The induction of SCEs by all tested agents in transferants was similar to that found in CHO-9 cells, while the mutant is known to respond with higher frequencies. ERCC-1 also bestowed resistance to MMS and EMS on the mutant to induction of chromosomal aberrations and cell killing to levels comparable with those of the wild-type strain. On the other hand ERCC-1 could not completely regain the repair proficiency against cell killing and induction of chromosomal aberrations by UV or MMC to the wild-type level. These results suggest that the ERCC-1 corrects the repair defect in CHO mutant cells, but it is unable to rectify fully the defect; probable reasons for this are discussed. However, amplified transferants (having more than 100 copies of the ERCC-1 gene) restored the impaired repair function in 43-3B to UV-, MMC- or 4NQO-induced DNA damage better than non-amplified transferants with a few copies of the ERCC-1. This difference may be due to the high amount of gene product involved in the excision repair process in the amplified cells.  相似文献   

3.
Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME.  相似文献   

4.
The Hansenula polymorpha GSH1/MET1 gene was cloned by complementation of glutathione-dependent growth of H. polymorpha gsh1 mutant isolated previously as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resistant and cadmium ion sensitive clone. The H. polymorpha GSH1 gene was capable of restoring cadmium ion resistance, MNNG sensitivity, normal glutathione level and cell proliferation on minimal media without addition of cysteine or glutathione, when introduced into the gsh1 mutant cells. It was shown that the H. polymorpha GSH1 gene has homology to the Saccharomyces cerevisiae MET1 gene encoding S-adenosyl-L-methionine uroporphyrinogen III transmethylase, responsible for the biosynthesis of sulfite reductase cofactor, sirohaem. The H. polymorpha GSH1/MET1 gene deletion cassette (Hpgsh1/met1::ScLEU2) was constructed and corresponding null mutants were isolated. Crossing data of the point gsh1 and null gsh1/met1 mutants demonstrated that both alleles were located to the same gene. The null gsh1/met1 mutant showed total growth restoration on minimal media supplemented with cysteine or glutathione as a sole sulfur source, but not with inorganic (sulfate, sulfite) or organic (methionine, S-adenosylmethionine) sources of sulfur. Moreover, both the point gsh1 and null gsh1/met1 mutants displayed increased sensitivity to the toxic carbon substrate methanol, formaldehyde, organic peroxide and cadmium ions.  相似文献   

5.
全长及缺失VLDL受体基因转染的CHO细胞与β-VLDL的结合效应   总被引:6,自引:0,他引:6  
为探讨 VLDL受体结合域中 8个重复序列在结合 VLDL中所起的作用 ,利用构建的全长VLDL受体 c DNA和缺失 5个重复序列的该受体 c DNA重组表达载体分别导入 CHO细胞中 .RT- PCR可检测到外源性 VLDL受体基因的表达 .受体与配体结合研究表明 ,转染全长 VLDLR重组体的 CHO细胞结合β- VLDL的能力明显高于转染 VLDLR缺失重组体的 CHO细胞 ,表明人VLDL受体在 CHO细胞中能有效表达 ,而缺失 5个重复序列的 VLDL受体基本失去了结合β-VLDL的能力  相似文献   

6.
K. A. Hudak  J. M. Lopes    S. A. Henry 《Genetics》1994,136(2):475-483
Three mutants were identified in a genetic screen using an INO1-lacZ fusion to detect altered INO1 regulation in Saccharomyces cerevisiae. These strains harbor mutations that render the cell unable to fully repress expression of INO1, the structural gene for inositol-1-phosphate synthase. The Cpe(-) (constitutive phospholipid gene expression) phenotype associated with these mutations segregated 2:2, indicating that it was the result of a single gene mutation. The mutations were shown to be recessive and allelic. A strain carrying the tightest of the three alleles was examined in detail and was found to express the set of co-regulated phospholipid structural genes (INO1, CHO1, CHO2 and OPI3) constitutively. The Cpe(-) mutants also exhibited a pleiotropic defect in sporulation. The mutations were mapped to the right arm of chromosome XV, close to the centromere, where it was discovered that they were allelic to the previously identified regulatory mutation sin3 (sdi1, ume4, rpd1, gam2). A sin3 null mutation failed to complement the mutation conferring the Cpe(-) phenotype. A mutant harboring a sin3 null allele exhibited the same altered INO1 expression pattern observed in strains carrying the Cpe(-) mutations isolated in this study.  相似文献   

7.
The consequences of the presence of the human gene ERCC1 in repair-deficient 43-3B cells were examined. The gene restores the sensitivity of this mutant not only to UV but also to 4NQO, N-Ac-AAF and alkylating agents to the normal level. Also, the frequency of mutation induction by UV at the Na+/K+-ATPase locus returns to the level of CHO wild-type cells. Additionally, the rate of cyclobutane pyrimidine dimer removal approaches that in wild-type CHO cells. The results obtained indicate that the human gene ERCC-1 restores the impaired functions in 43-3B, and that the gene is probably functionally homologous to the defective one in the 43-3B cell line. Some evidence was found for a difference between the human gene product and its rodent counterpart, as the restoration of normal sensitivity to 4NQO, ENU and N-Ac-AAF was complete whereas it was not for UV.  相似文献   

8.
9.
Chloroquine (CQ)-resistant (CQR) Plasmodium falciparum malaria parasites show a strong decrease in CQ accumulation in comparison with chloroquine-sensitive parasites. Controversy exists over the role of the plasmodial pfmdr1 gene in the CQR phenotype. pfmdr1 is a member of the superfamily of ATP-binding cassette transporters. Other members of this family are the mammalian multidrug resistance genes and the CFTR gene. We have expressed the pfmdr1-encoded protein, Pgh1, in CHO cells and Xenopus oocytes. CHO cells expressing the Pgh1 protein demonstrated an increased, verapamil-insensitive susceptibility to CQ. Conversely, no increase in drug susceptibility to primaquine, quinine, adriamycin, or colchicine was observed in Pgh1-expressing cells. CQ uptake experiments revealed an increased, ATP-dependent accumulation of CQ in Pgh1-expressing cells over the level in nonexpressing control cells. The increased CQ accumulation in Pgh1-expressing cells coincided with an enhanced in vivo inhibition of lysosomal alpha-galactosidase by CQ. CHO cells expressing Pgh1 carrying two of the CQR-associated Pgh1 amino acid changes (S1034C and N1042D) did not display an increased CQ sensitivity. Immunofluorescence experiments revealed an intracellular localization of both mutant and wild-type forms of Pgh1. We conclude from our results that wild-type Pgh1 protein can mediate an increased intracellular accumulation of CQ and that this function is impaired in CQR-associated mutant forms of the protein. We speculate that the Pgh1 protein plays an important role in CQ import in CQ-sensitive malaria parasites.  相似文献   

10.
Wild-type Chinese hamster ovary (CHO) cells were transfected with a DNA clone (MT-REV, site A) carrying a mouse gene for a dominant mutant regulatory subunit (RI) gene of cAMP-dependent protein kinase (PKA) from S49 cells along with a marker for G418 resistance. G418-resistant transfectant clone R-2D1 was resistant to 8-Br-cAMP-induced growth inhibition and morphological changes. The cells also did not phosphorylate a 50-kDa protein after cAMP stimulation and had decreased PKA activity, both characteristics of PKA mutants. Northern blot analysis indicated that clone R-2D1 was actively transcribing the MT-REV (site A)-specific RNA. We also tested clone R-2D1 for sensitivity to certain natural product hydrophobic drugs and found increased sensitivity to several drugs including adriamycin. Hypersensitivity to these drugs has previously been shown by us to be a characteristic of a CHO PKA mutant cell line. Expression of the mutant RI gene is also associated with a decrease in expression of the multidrug resistance associated P-glycoprotein (gp170) mRNA and protein. These results show that the PKA mutant RI gene from S49 cells acts as a dominant mutation to reduce the total PKA activity in the CHO transfectants as it does in mouse S49 cells. This study also confirms that reduced PKA activity modulates the basal multidrug resistance of these cells, apparently by causing decreased expression of the mdr gene at the protein and mRNA level.  相似文献   

11.
We have cloned the Candida albicans TPK2 gene encoding a cAMP-dependent protein kinase (PKA) catalytic subunit and generated a tpk2 homozygous null mutant to assess its ability to germinate in liquid media. N-acetylglucosamine (GlcNAc)-induced germ-tube formation was attenuated in the tpk2 strain and enhanced by compounds that are known to increase the PKA activity in situ. Germination was completely blocked in the presence of the myristoylated derivative of the heat-stable PKA inhibitor (MyrPKI). These results indicate that TPK1 acts positively in regulating the morphogenetic transition in C. albicans in the absence of the TPK2 gene. We were able to identify an mRNA from this second form of PKA in both wild-type and tpk2 null mutant cells. We found that PKA activity measured in the mutant lacking the TPK2 gene was about 10% of that displayed by the wild-type. The finding that the germinative response of tpk2 null mutant to serum was severely diminished at low serum concentrations indicates that the level of PKA is an important determinant of filamentous growth at low serum concentrations. The extent of germination attained at higher serum concentrations (5%) was similar in the wild-type and in the tpk2 null mutant strains suggesting that under these conditions germination was triggered through a PKA-independent pathway.  相似文献   

12.
13.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

14.
Many neurotransmitter receptors are known to interact with a variety of intracellular proteins that modulate signaling processes. In an effort to understand the molecular mechanism by which acetylcholine (ACh) signaling is modulated, we searched for proteins that interact with GAR-3, the Caenorhabditis elegans homolog of muscarinic ACh receptors. We isolated two proteins, VIG-1 and FRM-1, in a yeast two-hybrid screen of a C. elegans cDNA library using the third intracellular (i3) loop of GAR-3 as bait. To test whether these proteins regulate ACh signaling, we utilized Chinese hamster ovary (CHO) cells stably expressing GAR-3 (GAR-3/CHO cells). Previously we have shown that the cholinergic agonist carbachol stimulates extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in an atropine-sensitive manner in this cell line. When VIG-1 was transiently expressed in GAR-3/CHO cells, carbachol-stimulated ERK1/2 activation was substantially reduced. In contrast, transient expression of FRM-1 significantly enhanced carbachol-stimulated ERK1/2 activation. Neither VIG-1 nor FRM-1 expression appeared to alter the affinity between GAR-3 and carbachol. In support of this notion, expression of these proteins did not affect GAR-3-mediated phospholipase C activation. To verify the modulation of ERK1/2 activity by VIG-1 and FRM-1, we used an i3 loop deletion mutant of GAR-3 (termed GAR-3Δi3). Carbachol treatment evoked robust ERK1/2 activation in CHO cells stably expressing the deletion mutant (GAR-3Δi3/CHO cells). However, transient expression of either VIG-1 or FRM-1 had little effect on carbachol-stimulated ERK1/2 activation in GAR-3Δi3/CHO cells. Taken together, these results indicate that VIG-1 and FRM-1 regulate GAR-3-mediated ERK1/2 activation by interacting with the i3 loop of GAR-3.  相似文献   

15.
Attempts to complement the defect in the mitomycin C (MMC)-sensitive Chinese hamster ovary (CHO) mutant MMC3 led to the isolation of hybrids with high resistance to the cytotoxic action of the drug. Hybrid cells selected with MMC after fusion of MMC3 cells to human diploid fibroblasts were approximately five times more resistant to MMC than wild-type CHO cells but retained the original MMC3 sensitivity to another DNA cross-linking agent, diepoxybutane. To confirm that the MMC resistance was genetically determined and was of human origin, DNA from the resistant hybrids was introduced into MMC3 cells, and transfectants were selected in MMC. These cells had the same level of MMC resistance as the hybrids. Thus we have identified a human gene that can confer MMC resistance to CHO cells. Identification of the gene should help understand the mechanisms of MMC resistance in mammalian cells.  相似文献   

16.
Vectors expressing adenovirus 5 E1A or a domain 2 mutant E1A were introduced into CHO-K1 cells in order to transactivate the hCMV-MIE promoter in transient and stable transfections. Expression from the hCMV promoter was efficiently activated by both wild-type and mutant E1A in contrast to other viral promoters such as the SV40 early promoter which are repressed by E1A. E1A genes expressed from a strong promoter were inhibitory to the growth of CHO cells. Nevertheless, by the use of a weaker promoter, it was possible to isolate stably transfected cell lines containing a level of E1A compatible with both continued cell growth and significant transactivation of the hCMV promoter. By this means we have generated cell lines secreting tissue inhibitor of metalloproteinases (TIMP) at levels approaching those previously attained using gene amplification. CHO cell lines constitutively expressing wild-type and mutant E1A genes have been derived which can serve as new host cell lines for transient expression and efficient stable expression without gene amplification.  相似文献   

17.
Using recombinant retroviral transduction, we have introduced the heparin/heparan sulfate (HS) 3-O-sulfotransferase 1 (3-OST-1) gene into Chinese hamster ovary (CHO) cells. Expression of 3-OST-1 confers upon CHO cells the ability to produce anticoagulantly active HS (HS(act)). To understand how 6-OST and other proteins regulate HS(act) biosynthesis, a CHO cell clone with three copies of 3-OST-1 was chemically mutagenized. Resulting mutants that make HS but are defective in generating HS(act) were single-cell-cloned. One cell mutant makes fewer 6-O-sulfated residues. Modification of HS chains from the mutant with pure 6-OST-1 and 3'-phosphoadenosine 5'-phosphosulfate increased HS(act) from 7% to 51%. Transfection of this mutant with 6-OST-1 created a CHO cell line that makes HS, 50% of which is HS(act). We discovered in this study that (i) 6-OST-1 is a limiting enzyme in the HS(act) biosynthetic pathway in vivo when the limiting nature of 3-OST-1 is removed; (ii) HS chains from the mutant cells serve as an excellent substrate for demonstrating that 6-OST-1 is the limiting factor for HS(act) generation in vitro; (iii) in contradiction to the literature, 6-OST-1 can add 6-O-sulfate to GlcNAc residues, especially the critical 6-O-sulfate in the antithrombin binding motif; (iv) both 3-O- and 6-O-sulfation can be the final step in HS(act) biosynthesis in contrast to prior publications that concluded 3-O-sulfation is the final step in HS(act) biosynthesis; (v), in the presence of HS interacting protein peptide, 3-O-sulfate-containing sugars can be degraded into disaccharides by heparitinase digestion as demonstrated by capillary high performance liquid chromatography coupled with mass spectrometry.  相似文献   

18.
Yeast genes of phospholipid biosynthesis are negatively regulated by repressor protein Opi1 when precursor molecules inositol and choline (IC) are available. Opi1-triggered gene repression is mediated by recruitment of the Sin3 corepressor complex. In this study, we systematically investigated the regulatory contribution of subunits of Sin3 complexes and identified Pho23 as important for IC-dependent gene repression. Two non-overlapping regions within Pho23 mediate its direct interaction with Sin3. Previous work has shown that Sin3 recruits the histone deacetylase (HDAC) Rpd3 to execute gene repression. While deletion of SIN3 strongly alleviates gene repression by IC, an rpd3 null mutant shows almost normal regulation. We thus hypothesized that various HDACs may contribute to Sin3-mediated repression of IC-regulated genes. Indeed, a triple mutant lacking HDACs, Rpd3, Hda1 and Hos1, could phenocopy a sin3 single mutant. We show that these proteins are able to contact Sin3 in vitro and in vivo and mapped three distinct HDAC interaction domains, designated HID1, HID2 and HID3. HID3, which is identical to the previously described structural motif PAH4 (paired amphipathic helix), can bind all HDACs tested. Chromatin immunoprecipitation studies finally confirmed that Hda1 and Hos1 are recruited to promoters of phospholipid biosynthetic genes INO1 and CHO2.  相似文献   

19.
The hypothesis of functional hemizygosity has been examined for the α-amanitin resistant (AmaR, a codominant marker) locus in a series of Chinese hamster cell lines. AmaR mutants were obtained from different cell lines, e.g., CHO, CHW, M3-1 and CHO-Kl, at similar frequencies. After fractionation of different RNA polymerase activities in the extracts by chromatographic procedures, the sensitivity of the mutant RNA polymerase II towards α-amanitin was determined. While all of the RNA polymerase II activity in mutant CHO and CHO-Kl lines became resistant to α-amanitin inhibition, only about 50% of the activity is highly resistant in AmaR mutants of CHW and M3-1 cell lines. The remaining activity in the latter cell lines shows α-amanitin sensitivity similar to that seen with the wild-type enzyme. This behaviour is similar to that observed with a 1:1 mixture of resistant and sensitive enzymes from CHO cells. These results, therefore, strongly indicate that while only one functional copy of the gene affected by α-amanitin is present in CHO and CHO-Kl cells, two copies of this gene are functional in the CHW and M3-1 cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号