首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We studied the production of the ilvG gene product, the valine resistant acetolactate synthase isoenzyme II, in an ilvO + G + ilvB ilvHI derivative of Escherichia coli K-12. This strain contains mutations in the structural genes for the valine sensitive acetolactate synthase isoenzymes I and III. We find that the ilvG gene is not expressed in this strain when grown with either isoleucine and valine or with isoleucine, leucine and valine, or when limited for either isoleucine or valine. Since we previously found that the ilvG gene is expressed in an ilvO603 containing strain (Favre et al., 1976), we presume that the mechanism by which E. coli K-12 regulates the ilv gene cluster is responsible for the lack of ilvG expression in the ilvO + strain. The valine sensitivity of E. coli K-12 is a consequence of this regulatory pattern.  相似文献   

2.
Summary The biosynthetic acetohydroxy acid synthase activities of E. coli K12 are encoded by three genetic loci namely, ilvB (acetohydroxy acid synthase I), ilvG (acetohydroxy acid synthase II) and ilvHI (acetohydroxy acid synthase III). The previously reported involvement of cyclic AMP in the regulation of the biosynthetic acetohydroxy acid synthase isozymes in E. coli K-12 was found to be due to the effect of this nucleotide on the expression of ilvB. Cyclic AMP had no effect on acetohydroxy acid synthase activity in strains lacking wild-type ilvB activity but containing the remaining isozymes. Very little activity of acetohydroxy acid synthase coded for by ilvB was found when ppGpp and cyclic AMP were severely limited. Addition of cyclic AMP under these conditions increased ilvB expression 24-fold. The data suggest that in addition to multivalent repression and ppGpp, cyclic AMP plays a major role in the regulation of the ilvB biosynthetic operon.  相似文献   

3.
Mutant of Escherichia coli K-12 Missing Acetolactate Synthase Activity   总被引:12,自引:10,他引:2       下载免费PDF全文
A mutant requiring isoleucine and valine for growth, because of the absence of acetolactate synthase activity, has been isolated. At least one of three different genes (ilvG, ilvB, ilvI) is required for the expression of acetolactate synthase activity, thus suggesting the presence of three different acetolactate synthase isoenzymes.  相似文献   

4.
Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a ∼355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides.  相似文献   

5.
AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of “typical” AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate. We have cloned the two subunits, ilvB and ilvN, of this Escherichia coli isoenzyme and examined the enzymatic properties of the purified holoenzyme and the enzyme reconstituted from purified subunits. Unlike other AHASs, AHAS I demonstrates cooperative feedback inhibition by valine, and the kinetics fit closely to an exclusive binding model. The formation of acetolactate by AHAS I is readily reversible and acetolactate can act as substrate for alternative AHAS I-catalyzed reactions.  相似文献   

6.
Summary A strain carrying the ilv0603 mutation has been isolated in E. coli K-12 and its characteristics were found to be very similar to those previously reported by Ramakrishnan and Adelberg (1965a) for other ilv0 mutants.The strain carrying the ilv0603 mutation is resistant to valine inhibition (Valr) and we show that this resistance depends on the expression of a newly recognized gene, ilvG, which is located at min 75, between ilvE and ilvD on the E. coli K-12 map. The ilvG gene causes the expression of a Valr acetolactate synthase, which is detectable only when the ilv0603 mutation is also present in cis on the same chromosome. Under these conditions the Valr acetolactate synthase activity is eluted, on a hydroxylapatite column, at an ionic strength slightly lower than that required for elution of the remaining acetolactate synthase activity (sensitive to valine inhibition). The Valr peak is missing in a strain carrying an ilvG (amber) mutation.  相似文献   

7.
Two valine-sensitive acetohydroxy acid synthase activities were separable from Escherichiacoli K-12 cells by virtue of their different affinities for DEAE-cellulose eluted with a KC1 gradient. These activities appeared to be independent from a valine-resistant cryptic component expressed only in ilvO regulatory mutants. The properties of the first and second activity were coincident to those of extracts of ilvB and ilvHI mutants, respectively. These data prove that the ilvB and ilvHI gene products exist in the cell as physically distinct acetohydroxy acid synthase isoenzymes.  相似文献   

8.
The herbicide sulfometuron methyl (SM) inhibited the growth of the cyanobacterium Synechococcus sp. PCC7942, but not of Synechocystis sp. PCC6714. The inhibitory effect was alleviated by the simultaneous addition of valine, leucine and isoleucine. SM resistant mutants were isolated from Synechococcus 7942, two types of which were further analysed. In these mutants, SM3/20 and SM2/32, the activity of acetolactate synthase (ALS) — a key enzyme in the biosynthesis of branched-chain amino acids —appeared 2600- and 300-fold, respectively, more resistant to SM than that of their wild type. Strain SM2/32 also exhibited a low level of ALS activity. Although the growth of the latter mutant was extremely inhibited by valine, the sensitivity of its ALS activity to feed-back inhibition by the amino acid was unaltered. At high concentrations valine inhibited growth of the wild type strains and of the mutant SM3/20. Isoleucine alleviated the valine-induced growth inhibition. Unlike that of Synechococcus 7942, the ALS activity of Synechocystis was found to tolerate high concentrations (100-fold) of the herbicide. The study confirms that the SM mutations are correlated with a cyanobacterial ilv gene.Abbreviations ALS acetolactate synthase; ile, isoleucine - leu leucine - NTG N-methyl-N-nitro-N-nitrosoguanidine - SM sulfometuron methyl - SMr sulfometuron methyl resistant - val valine  相似文献   

9.
《Gene》1997,188(1):77-84
The gene for acetohydroxyacid synthase (AHAS) was cloned from the archaeon Methanococcus aeolicus. Contrary to biochemical studies [Xing, R. and Whitman, W.B. (1994) J. Bacteriol. 176, 1207–1213] the enzyme was encoded by two open reading frames (ORFs). Based on sequence homology, these ORFs were designated ilvB and ilvN for the large and small subunits of AHAS, respectively. A putative methanogen promoter preceded ilvB-ilvN, and a potential internal promoter was found upstream of ilvN. ilvB encoded a 65-kDa protein, which agreed well with the measured value for the purified enzyme. ilvN encoded a 19-kDa protein, which fell within the range of Mr of small subunits from other sources. Phylogenetic analysis of the deduced amino acid sequence of ilvB showed a close relationship between the AHAS of Bacteria and Archaea, to the exclusion of other enzymes in this family, including pyruvate oxidase, glyoxylate carboligase, pyruvate decarboxylase, and the acetolactate synthase found in fermentative Bacteria. Thus, this family of enzymes probably arose prior to the divergence of the Bacteria and Archaea. Moreover, the higher plant AHAS and the red algal AHAS were related to the AHAS II of Escherichia coli and the cyanobacterial AHAS, respectively. For this reason, these genes appear to have been acquired by the Eucarya during the endosymbiosis that gave rise to the mitochondrion and chloroplast, respectively. One of the ORFs in the Methanococcus jannaschii genome possesses high similarity to the M. aeolicus ilvB, indicating that it is an authentic AHAS.  相似文献   

10.
Evidence is reported that shows the presence in Escherichia coli K-12 of a newly found acetolactate synthase. This enzyme is the product of two genes, ilvH and ilvI, both located very close to leu. Amber mutations have been found in both genes and therefore their products are polypeptides. Mutations in the ilvH gene cause the appearance of an acetolactate synthase activity which is relatively resistant to valine inhibition and can be separated by adsorption on hydroxylapatite from another activity present in the extract and more sensitive to valine inhibition than the former. A mutant altered in the ilvI gene was isolated among the revertants sensitive to valine inhibition of an ilvH mutant. Such a mutant lacks the resistant acetolactate synthase. A temperature-sensitive revertant of the ilvI mutant contained a temperature-sensitive acetolactate synthase. Thus ilvI is the structural gene for a specific acetolactate synthase. The activity of the ilvH gene product has been measured by adding an extract containing it to a purified ilvI acetolactate synthase, which, upon incubation, became more sensitive to valine inhibition. Conversely, a valine-sensitive acetolactate synthase (the product of the ilvH and the ilvI genes) became more resistant to valine inhibition upon incubation with an extract of a strain containing a missense ilvH gene product.  相似文献   

11.
A New Map Location for the ilvB Locus of ESCHERICHIA COLI   总被引:16,自引:0,他引:16       下载免费PDF全文
We isolated, in E. coli K12, new alleles of the ilvB locus, the structural gene for acetolactate synthase isoenzyme I, and showed them to map at or near the ilvB619 site. The map position of the ilvB locus was redetermined because plasmids containing the ilvC-cya portion of the chromosome did not complement mutations at the ilvB locus. Furthermore, diploids for the ilvEDAC genes formed with these plasmids in an ilvHI background facilitated the isolation of the new ilvB alleles. The ilvB locus was remapped and found to be located at 81.5 minutes, between the uhp and dnaA loci. This location was determined by two- and three-point transductional crosses, deletion mapping and complementation with newly isolated plasmids. One of the new alleles of the ilvB gene is a mu-1 insertion. When present in the donor strain, this allele interferes with the linkage of genes flanking the mu-1 insertion, as well as the linkage of genes to either side of the mu-1 insertion.  相似文献   

12.
Acetohydroxy acid synthase III (AHAS III) is one of the three isoenzymes which catalyze the condensation reaction for the biosynthesis of the branched chain amino acids in Escherichia coli K-12. The synthesis of this enzyme is repressed by leucine. As a consequence of this regulatory feature, strain PS1035, in which AHAS III is the only AHAS isoenzyme expressed, does not grow in minimal medium containing leucine. The other two branched chain amino acids, isoleucine and valine, do not have regulatory effects on AHAS III synthesis.  相似文献   

13.
Summary Genes coding for the enzyme acetohydroxyacid synthase, often referred to as acetolactate synthase (AHAS, ALS; EC 4.1.3.18), from wild type Arabidopsis thaliana and a sulfonylurea-resistant mutant line GH50 (csrl-1; Haughn et al. 1988) were introduced in Nicotiana tabacum. Both genes were expressed at high levels with the 35S promoter. The csrl-1 gene conferred high levels of resistance to chlorsulfuron whereas the wild type gene did not. As selectable markers, chimaeric AHAS genes yielded transgenic plants on chlorsulfuron but at much lower efficiencies than with a chimaeric neomycin phosphotransferase gene on kanamycin (Sanders et al. 1987). Shoot differentiation from leaf discs was delayed on chlorsulfuron by 4–6 weeks. This study indicated a role for mutant AHAS genes in the genetic manipulation of herbicide resistance in transgenic plants but as selectable markers for plant cells undergoing differentiation no advantage over other genes was perceived.  相似文献   

14.
A Nicotiana plumbaginifolia cell line able to grow in the presence of high doses of valine was isolated following -rays mutagenesis. The selected clone, named D5R5, showed a growth rate higher than that of wild-type. It was less sensitive also to an equimolar mixture of the three branched-chain amino acids, but did not display cross-resistance to isoleucine and leucine. The increased tolerance was due to neither a reduced valine uptake, nor a modification in the level or sensitivity to feed-back inhibition by valine of the first common enzyme (and the main regulative site) in isoleucine, leucine and valine synthesis, acetohydroxyacid synthase (AHAS). When wild-type cells were fed with valine or equimolar mixtures of the three aminoacids, a decrease in AHAS level was found. On the contrary, the level of extractable AHAS activity from D5R5 cells was significantly less affected by similar treatments, suggesting that some alteration in enzyme modulation mechanism(s) could account for valine resistance.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acid - FAD flavin adenine dinucleotide - ILV equimolar mixture of isoleucine, leucine and valine - TPP thiamine pyrophosphate  相似文献   

15.
Shaner DL  Singh BK 《Plant physiology》1991,97(4):1339-1341
Acetohydroxyacid synthase (AHAS), the first enzyme leading to the biosynthesis of valine, leucine, and isoleucine, is inhibited by different chemical classes of herbicides. There is a loss in the extractable AHAS activity in imidazolinone-treated plants. Immunological studies using a monoclonal antibody against AHAS revealed no degradation of AHAS protein in imidazolinone-treated maize (Zea mays) plants. Therefore, the loss in AHAS activity is not due to the loss of AHAS protein.  相似文献   

16.
Nicotiana plumbaginifolia suspension cultured cells were grown on medium supplemented with valine, leucine and isoleucine, singly or in combination. The effects of the three branched-chain amino acids on cell growth rate and on the activity of acetohydroxyacid synthase (AHAS), the first enzyme (and the main regulative site) of their biosynthetic pathway, were studied. Results showed that valine and leucine, at concentrations ranging from 10–4 to 10–3 M, inhibit growth, and at higher doses (from 10–2 to 10–1 M) AHAS activity. Growth, but not AHAS activity, was affected also by isoleucine. The addition of ammonium succinate to the culture medium, in order to counteract a possible general inhibitory effect of these compounds on nitrogen metabolism, relieved only partially their cytotoxicity. Feeding cells with equimolar mixtures of the three amino acids resulted in a minor but reproducible decrease in AHAS level, which was proportional to the dose. A similar result was obtained also on N. plumbaginifolia seedlings, suggesting that in this species a modulation of enzyme level could play a role in controlling the flow of metabolites through the pathway.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acids - FAD flavin adenine dinucleotide - GS glutamine synthetase - TPP thiamine pyrophosphate  相似文献   

17.
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS–PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg+2, ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 μM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.  相似文献   

18.
Concerted efforts were directed towards understanding the control of acetohydroxy acid synthase (AHAS) in the gyrB mutant hisU1820 of Salmonella typhimurium. A media shift from valine to valine plus isoleucine causes a dramatic 4 to 5 fold burst of AHAS valine sensitive activity which appears to be dependent on translation. DJ19, an isolated valine sensitive derivative of the gyrB mutant, maintains a dramatic increase in AHAS valine sensitive activity upon the addition of isoleucine to valine supplemented cultures, suggesting that the isoleucine effect is specific for valine sensitive AHAS. Evidence supports isoleucine as a positive effector on valine sensitive AHAS expression and that the gyrB mutation accentuates the isoleucine effect.  相似文献   

19.
Summary Some of the strains containing mutations in the genes for the acetolactate synthase isoenzymes are temperature sensitive (ts). Suppression of the acetolactate synthase defect due to one of these mutations suppresses also the ts phenotype; moreover, a genetic cross shows that the two phenotypes cannot be dissociated.The ts phenotype is accompanied by a decreased efficiency of transduction with Pl phage. Observations at the light microscope show formation of abnormal cells. Under specific conditions diaminopimelate stimulates growth and restores normal transduction efficiency. The rate of diaminopimelate formed and excreted by non-growing cells decreases when an acetolactate synthase mutation is present.We give evidence that the ts phenotype is due to an increased formation of lysine from diaminopimelate; this causes a starvation for the latter and therefore cell wall abnormalities. In fact, even at the permissive temperature, the lysine pool is 8x increased in a strain with an acetolactate synthase defect, while a slight decrease in the diaminopimelate pool is observed. Moreover, introduction into a ts strain of a mutation in lysA (the gene coding for diaminopimelate decarboxylase) cures the ts phenotype. Finally among the temperature resistant revertants we found some lysine auxotrophs.  相似文献   

20.
Escherichia coli K-12 mutants resistant to growth inhibition by valine were isolated. These strains contained mutations in the ilvB operon effecting either the regulation of acetohydroxy acid synthase I or the sensitivity of the enzyme to end product inhibition by valine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号