首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid sequence of rat liver cathepsin L   总被引:1,自引:0,他引:1  
The complete amino acid sequences of the heavy and light chains of rat liver cathepsin L (EC 3.4.22.15) were determined at the protein level. The heavy and light chains consisted of 175 and 44 amino acid residues, respectively, and their Mr values without glycosyl groups calculated from these sequences were 18941 and 5056, respectively. The amino acid sequence was also determined from the N-terminal sequences of the heavy and light chains, and the sequences of cleavage fragments of the heavy chain with lysylendopeptidase and cyanogen bromide. The fragments were aligned by comparison with the amino acid sequence deduced from the sequence of cDNA of rat preprocathepsin L. The sequence of rat liver cathepsin L determined at the protein level was identical with that deduced from the cDNA sequence except that in the heavy chain, residues 176-177 (Asp-Ser) were not present at the C-terminus and alanine was replaced by proline at residue 125. Asn-108 in the heavy chain is modified with carbohydrate.  相似文献   

2.
Amino acid sequence of human liver cathepsin B   总被引:7,自引:0,他引:7  
The complete amino acid sequence of cathepsin B (EC 3.4.22.1) from human liver was determined. The 252-residue sequence was obtained by automated solid-phase Edman degradation of the light and heavy chain resulting from limited proteolysis of the single-chain enzyme and of fragments produced by cyanogen bromide and enzymatic cleavage of the heavy chain. Human liver cathepsin B has 83.7% identical residues with the corresponding enzyme from rat liver. Comparison of both mammalian cathepsin B sequences with the sequence of papain provides further evidence that lysosomal and plant cysteine proteinases have evolved from a common ancestor and share a similar catalytic mechanism.  相似文献   

3.
Amino acid sequence of chicken liver cathepsin L   总被引:1,自引:0,他引:1  
The complete amino acid sequences of the heavy and light chains of chicken liver cathepsin L have been determined by automated gas-phase Edman degradation. The heavy and light chains contained 176 and 42 amino acid residues respectively. A glucosamine-based oligosaccharide group was attached to Asn-109 of the heavy chain. Chicken liver cathepsin L had high sequence homology with rat cathepsin H, but exhibited less similarity with rat cathepsin B. Comparisons of cathepsin L with plant cysteine proteinases, such as papain, actinidin and aleurain, reveal high degree of homology.  相似文献   

4.
Studies are reported on the primary structure of human retinol-binding protein (RBP), the specific plasma transport protein for vitamin A. The protein consists of a single polypeptide chain of 186-187 amino acids. RBP was cleaved by cyanogen bromide into five fragments, CB-I (27 residues), CB-11 (25 residues), CB-III (20 residues), CB-IV (15 residues), and CB-V (99-100 residues). The cyanogen bromide fragments were isolated, their compositions were determined, and they were aligned after studies that included the tryptic digestion of maleylated, reduced, and carboxymethylated RBP and subsequent enzymatic digestion of some of the resulting tryptic peptides. The amino acid sequences of four of the five cyanogen bromide fragments were determined, and the sequence of almost two-thirds of the NH2-terminal portion of the RBP molecule was determined as: H2N-GLU-Arg-Asp-Cys-Arg-Val-Ser-ser-Phe-Arg-Val-Lys-Glu-Asn-Phe-Asp-Lys-Ala-Arg-Phe-Ser-Gly-Thr-Trp-Tyr-Ala-Met-Ala-Lys-Lys-Asp-Pro-Glu-Gly-Leu-Phe-Leu-Gln-Asp-Asx-Ile-Val-Ala-Glu-Phe-Ser-Val-Asx-Glx-Gly-Thr-Met-Ser-Ala-Thr-Ala-Gly-Lys-Arg-Val-Arg-Leu-Leu-Asn-Asn-Trp-Asp-Val-Cys-Ala-Asp-Met-Val-Gly-thr-Phe-Thr-Asp-Thr-Glu-Asp-Pro-Ala-Lys-Phe-Lys-Met-Lys-Tyr-Trp-Gly-Val-Ala-Ser-Phe-Leu-Gln-Lys-Gyl-Asn-Asp-Asx-His-Trp-Ile-Val-Asp-Thr-Asx-Thr-Tyr-Tyr-Ala-Val-Glu-Tyr-Cys-Ser-Arg---.  相似文献   

5.
Human liver cathepsin L consists of a heavy chain and a light chain with Mr values of 25,000 and 5000 respectively. The chains have been purified and their N-terminal amino acid sequences have been determined. The 40 amino acids determined from the heavy chain and 42 amino acids sequenced in the light chain are homologous with the N-terminal and C-terminal regions respectively of the superfamily of cysteine proteinases. Therefore it is likely that the two chains of cathepsin L are derived by proteolysis of a single polypeptide precursor. Of the amino acids sequenced, 81% are identical with the homologous portions of a protein sequence for a major cysteine proteinase predicted from a cDNA clone from a mouse macrophage cell line. This is the closest relative amongst the known sequences in the superfamily and strongly indicates that the protein encoded by this mRNA is cathepsin L. The mouse protein is also probably the major excreted protein of a transformed cell line [Gal & Gottesman (1986) Biochem. Biophys. Res. Commun. 139, 156-162]. The heavy chain is identical in only 71% of its residues with the sequence of ox cathepsin S, providing further evidence that this latter enzyme is probably not a species variant of cathepsin L. The relationship with a second unidentified cathepsin cDNA clone from a bovine library is much weaker (41% identity), and so this clone remains unidentified.  相似文献   

6.
In the preceding paper [Maita, T., Miyanishi, T., Matsuzono, K., Tanioka, Y., & Matsuda, G. (1991) J. Biochem. 110, 68-74], we reported the amino-terminal 837-residue sequence of the heavy chain of adult chicken pectoralis muscle myosin. This paper describes the carboxyl terminal 1,097-residue sequence and the linkage of the two sequences. Rod obtained by digesting myosin filaments with alpha-chymotrypsin was redigested with the protease at high KCl concentration, and two fragments, subfragment-2 and light meromyosin, were isolated and sequenced by conventional methods. The linkage of the two fragments was deduced from the sequence of an overlapping peptide obtained by cleaving the rod with cyanogen bromide. The rod contained 1,039 amino acid residues, but lacked the carboxyl-terminal 58 residues of the heavy chain. A carboxyl-terminal 63-residue peptide obtained by cleaving the whole heavy chain with cyanogen bromide was sequenced. Thus, the carboxyl terminal 1,097-residue sequence of the heavy chain was completed. The linkage of subfragment-1 and the rod was deduced from the sequence of an overlapping peptide between the two which was obtained by cleaving heavy meromyosin with cyanogen bromide. Comparing the sequence of the adult myosin thus determined with that of chicken embryonic myosin reported by Molina et al. [Molina, M.I., Kropp, K.E., Gulick, J., & Robbins, J. (1987) J. Biol. Chem. 262, 6478-6488], we found that the sequence homology is 94%.  相似文献   

7.
The amino acid sequence of equine milk lysozyme   总被引:2,自引:0,他引:2  
The amino acid sequence of equine milk lysozyme has been elucidated. The study involves the determination of the sequence of the N-terminal region of the whole protein, cyanogen bromide fragments, tryptic and chymotryptic peptides and fragments produced by chemical cleavage after tryptophan residues. The protein consists of a single chain of 129 amino acid residues and has a Mr of 14647. While equine milk lysozyme has the essential features of a c(chick)-type lysozyme, there is only 51% sequence homology with human milk lysozyme and 50% with domestic hen egg white lysozyme. Some of the implications of the large number of differences are discussed.  相似文献   

8.
Tryptic peptides from two cyanogen bromide (CNBr) fragments CB II and CB III of the Ala chain of ricin D were sequenced by manual Edman degradation. Chymotryptic or peptic peptides from the two fragments were isolated by Dowex 1 x 2 column chromatography to obtain overlaps for the tryptic peptides, and the complete amino acid sequences of fragments CB II and III were established. The amino acid residues in fragments CB II and CB III accounted for 75 and 45 residues, respectively, of 260 residues in the Ala chain.

These sequences together with the sequence of fragment CBI described in the preceding paper established the complete sequence of the 260 amino acid residues in the Ala chain. Some structural characteristics of the protein are also discussed.  相似文献   

9.
The structural relationship between isoenzymes I and II of chloroplast glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NADP+ oxidoreductase (phosphorylating) EC 1.2.1.13) has been established at the protein level. The complete primary structure of subunits A and B of glyceraldehyde-3-phosphate dehydrogenase I from Spinacia oleracea has been determined by sequence analysis of the corresponding tryptic peptides, aligned by fragments derived from cyanogen bromide and Staphylococcus proteinase V8 digestions and by partially sequencing each intact subunit. Subunit A has an Mr of 36,225 and consists of 337 amino acid residues, whilst subunit B (Mr 39,355) consists of 368 residues. The amino acid sequence of subunit B, as determined through direct analysis of the protein, is identical to that recently deduced at cDNA level (Brinkmann et al. (1989) Plant Mol. Biol. 13, 81-94). The two subunits share a common portion of amino acid sequence which differs by 66 amino acid residues. Subunit B has an extra C-terminal sequence of 31 amino acid residues. Chloroplast glyceraldehyde-3-phosphate dehydrogenase II was partially characterized by sequencing the N-terminal portion of the intact protein and some of its tryptic peptides. The sequences of all the examined fragments fit precisely that of the corresponding regions of subunit A from glyceraldehyde-3-phosphate dehydrogenase I.  相似文献   

10.
Ferritin, an iron-storage protein found in all life forms examined, is composed of varying proportions of two subunits of different molecular weight, heavy (H) and light (L). Using cDNA clones, we have determined the nucleotide sequence corresponding to the mRNA of the L-subunit of rat liver ferritin. The coding region of 546 nucleotides (182 amino acids) is flanked by 5'- and 3' -untranslated regions of approximately 130 and 150 nucleotides, respectively. The rat liver L-subunit amino acid sequence derived from the reading frame of the cDNA showed 88% and 82% homology, respectively, with the amino acid sequences of horse spleen ferritin (Heusterspreute, M., and Crichton, R. R. (1981) FEBS Lett. 129, 322-327), and human spleen ferritin (Wustefeld, C., and Crichton, R. R. (1982) FEBS Lett. 150, 43-48), thus demonstrating evolutionary conservation of the L-subunit sequence. However, a major difference between the rat and the horse and human sequences is the insertion of an octopeptide near the COOH-terminus of the rat protein resulting in a slightly longer peptide chain in this species. The reading frame and parts of the derived amino acid sequence including the octopeptide sequence were confirmed by direct amino acid sequencing of cyanogen bromide peptides from rat liver ferritin. Minor fragments of rat liver ferritin, presumably derived from the H-subunit, were also isolated after cyanogen bromide treatment. On sequencing, these H-peptides showed limited homology with regions of the L-sequence but extensive homology with published H-sequences from human liver and spleen. The H-subunit sequence did not contain the octopeptide found as part of the L-subunit sequence.  相似文献   

11.
The amino acid sequence of a novel inhibitor of cathepsin D from potato   总被引:4,自引:0,他引:4  
The amino acid sequence of a cathepsin D inhibitor isolated from potato is described. It was determined by analysis of peptides generated by use of the glycine-specific proteinase PPIV. The order of the peptides was established by examination of tryptic peptides derived from the two cyanogen bromide peptides. The inhibitor comprises 187 amino acid residues, and has a calculated Mr of 20,450.  相似文献   

12.
The complete amino acid sequence of the alpha chain of human fibrinogen has been determined. It contains 610 amino acid residues and has a calculated molecular weight of 66,124. The chain has 10 methionines, and fragmentation with cyanogen bromide yields 11 peptides [Doolittle, R.F., Cassman, K.G., Cottrell, B.A., Friezner, S.J., Hucko, J.T., & Takagi, T. (1977) Biochemistry 16, 1703]. The arrangement of the 11 fragments was determined by the isolation of peptide overlaps from plasmic and staphylococcal protease digests of fibrinogen and/or alpha chains. In addition, certain of the cyanogen bromide fragments, preliminary reports of whose sequences have appeared previously, have been reexamined in order to resolve several discrepancies. The alpha chain is homologous with the beta and gamma chains of fibrinogen, although a large repetitive segment of unusual composition is absent from the latter two chains. The existence of this unusual segment divides the sequence of the alpha chain into three zones of about 200 residues each that are readily distinguishable on the basis of amino acid composition alone.  相似文献   

13.
Porcine pancreatic α-amylase (1,4-α-d-glucan glucanohydrolase EC 3.2.1.1), a single polypeptide chain, contains nine residues of methionine. Eight different fragments resulting from cleavage of this molecule by cyanogen bromide were characterized. The sequences of six of them have previously been reported. Two missing fragments, CN2 (82 residues) and CN3b1 (76 residues) were purified after breaking of the interpeptidic disulfide bridge and their complete sequence as well as that of the previously purified CN1 peptide (102 residues) are reported here. The location of the three disulfide bridges present in these peptides was determined. Ordering of the carboxymethylated cyanogen bromide fragments was carried out by pulse labeling the amylase chain in vivo. The complete sequence of the porcine pancreatic amylase chain (496 residues) and the location of its five disulfide bridges is presented. Comparison with human and mouse pancreatic and salivary α-amylases and with rat pancreatic amylase obtained from the corresponding cDNA nucleotidic sequences shows a high degree of homology between mammalian α-amylases.  相似文献   

14.
Porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrolase EC 3.2.1.1), a single polypeptide chain, contains nine residues of methionine. Eight different fragments resulting from cleavage of this molecule by cyanogen bromide were characterized. The sequences of six of them have previously been reported. Two missing fragments, CN2 (82 residues) and CN3b1 (76 residues) were purified after breaking of the interpeptidic disulfide bridge and their complete sequence as well as that of the previously purified CN1 peptide (102 residues) are reported here. The location of the three disulfide bridges present in these peptides was determined. Ordering of the carboxymethylated cyanogen bromide fragments was carried out by pulse labeling the amylase chain in vivo. The complete sequence of the porcine pancreatic amylase chain (496 residues) and the location of its five disulfide bridges is presented. Comparison with human and mouse pancreatic and salivary alpha-amylases and with rat pancreatic amylase obtained from the corresponding cDNA nucleotidic sequences shows a high degree of homology between mammalian alpha-amylases.  相似文献   

15.
Most of the cyanogen bromide fragments obtained from human plasminogen and plasmin have been purified using combinations of gel filtration and ion-exchange chromatography. The purified fragments have been characterized by molecular weight determination (dodecyl sulphate electrophoresis), amino acid analysis, carbohydrate analysis and direct NH2-terminal amino acid sequence determination. Since some of the purified fragments were compounds with uncompletely cleaved methionyl bonds it was possible to clarify the organization of most of the cyanogen bromide fragments in the plasminogen molecule. The fragment containing the arginyl-valyl bond cleaved during the second step of the activation process is further identified. It is also shown that the microheterogeneity that normally exists in human plasminogen probably has its origin in several sites. One such site is situated in the light (B) chain of plasmin, while another is situated in the carboxyterminal part of the heavy (A) chain. Neither of these sites seems to contain sialic acid.  相似文献   

16.
The amino acid sequence of equine alpha-lactalbumin   总被引:1,自引:0,他引:1  
The amino acid sequence of equine alpha-lactalbumin has been determined with the aid of an automatic sequencer. The protein chain consists of 123 amino acids and has a Mr of 14218. Elucidation of the structure involved sequence determination of native protein (residues 1-32), cyanogen bromide fragments, and tryptic, chymotryptic and S. aureus V8 proteolytic peptides. Approximately 67% of the residues are identical with corresponding residues of bovine alpha-lactalbumin B, and there is close homology with alpha-lactalbumin of other species.  相似文献   

17.
We have isolated and characterized cDNA clones encoding rat liver cytosol 10-formyltetrahydrofolate dehydrogenase (EC 1.5.1.6). An open reading frame of 2706 base pairs encodes for 902 amino acids of Mr 99,015. The deduced amino acid sequence contains exact matches to the NH2-terminal sequence (28 residues) and the sequences of five peptides derived from cyanogen bromide cleavage of the purified protein. The amino acid sequence of 10-formyltetrahydrofolate dehydrogenase has three putative domains. The NH2-terminal sequence (residues 1-203) is 24-30% identical to phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) from Bacillus subtilis (30%), Escherichia coli (24%), Drosophila melanogaster (24%), and human hepatoma HepG2 (27%). Residues 204-416 show no extensive homology to any known protein sequence. Sequence 417-900 is 46% (mean) identical to the sequences of a series of aldehyde dehydrogenase (NADP+) (EC 1.2.1.3). Intact 10-formyltetrahydrofolate dehydrogenase exhibits NADP-dependent aldehyde dehydrogenase activity. The sequence identity to phosphoribosylglycinamide formyltransferase is discussed, and a binding region for 10-formyltetrahydrofolate is proposed.  相似文献   

18.
Tetanus toxin is a 151-kDa protein. The complete amino acid sequence is known. The mature toxin is made up of two peptide chains and contains 10 half-cystine residues. Treatment with 4-vinylpyridine in the presence of 6 M guanidine converted six of them into S-pyridylethyl cysteine residues as determined by amino acid analysis. When alkylation was preceded by mercaptolysis, all 10 half-cystine residues were recovered in the S-pyridylethylated form. It was therefore concluded that the toxin contains six sulfhydryl groups and two disulfide bonds. The positions of the residues carrying sulfhydryl groups and of those involved in disulfide bridges were determined by labelling of the toxin alternatively with 4-vinylpyridine or with 4-dimethylaminoazobenzene-4'-iodoacetamide (DABIA), directly or after mercaptolysis. The toxin derivatives were cleaved with cyanogen bromide and the elution patterns in reversed-phase HPLC compared. The chromatography components were identified by N-terminal amino acid sequence and amino acid composition. In the chromatography of the non-mercaptolysed, DABIA-treated sample four chromophore-carrying components were detected which could be demonstrated by N-terminal sequence analysis to correspond to six half-cystine-containing cyanogen bromide fragments. In the mercaptolysed, DABIA-treated sample three additional chromophore-carrying components were present, corresponding to two previously disulfide-linked cyanogen bromide fragments and one fragment which had contained an internal disulfide bridge. The HPLC patterns showed characteristic differences as the DABIA-labelled fragments were considerably more hydrophobic than the corresponding vinylpyridine-labelled fragments. It was established that the half-cystine residues in positions 26, 185, 198, 311, 868, and 1300 are present in the sulfhydryl form, that those in positions 438 and 466 are disulfide-bridged, thereby connecting the light and heavy chains of the toxin, and that those in positions 1076 and 1092 are disulfide-bridged, thereby giving rise to a loop in the heavy chain. During the progress of the investigations about 20% of the amino acid sequence previously predicted from DNA analysis was confirmed by protein-chemical methods.  相似文献   

19.
A somatostatin receptor isolated from GH4C1 rat pituitary tumor-derived cells was cleaved with cyanogen bromide or cyanogen bromide+trypsin to obtain sequenceable fragments. Five unique amino acid sequences ranging from 6 to 27 amino acid residues were obtained. The sequence was identical to sequence recently reported for one of two somatostatin receptors cloned from human pancreas [Yamada et al., (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 251-255] except for a single valine to isoleucine substitution. This is the first report of amino acid sequence from a purified somatostatin receptor.  相似文献   

20.
5 fragments are isolated after the degradation of somatotropin from sei whale pituitary glands with cyanogen bromide: N-terminal 4-segmented; C-terminal 12-segmented with the internal disulfide bond; middle 25- and 30-segmented and a high molecular weight fragment following N-terminal tetrapeptide and bound with disulfide bond to 30-segmented fragment. Complete amino acid sequence of three shortest cyanogen bromide fragments is deciphered and N- and C-terminal sequence is investigated in two large fragments after their uncoupling under performic acid oxidation. Amino acid sequence is deciphered of a peptide obtained after trypsine hydrolysis of 30-segmented cyanogen bromide fragment. Comparison of amino acid sequence of whale somatotropin fragments with that of sheep, beef and human somatotropin has revealed that 57 out of 61 identified amino acid residues of whale somatotropin repeat amino acid residues in similar regions of beef somatotropin, 56--of sheep and only 42--of human somatotropins. Besdies, 4 of 5 revealed amino acid substitutions in whale hormone, as compared with sheep somatotropin, are amino acids which are present at the same positions in human hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号