首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single chromatin fibers were assembled directly in the flow cell of an optical tweezers setup. A single lambda phage DNA molecule, suspended between two polystyrene beads, was exposed to a Xenopus laevis egg extract, leading to chromatin assembly with concomitant apparent shortening of the DNA molecule. Assembly was force-dependent and could not take place at forces exceeding 10 pN. The assembled single chromatin fiber was subjected to stretching by controlled movement of one of the beads with the force generated in the molecule continuously monitored with the second bead trapped in the optical trap. The force displayed discrete, sudden drops upon fiber stretching, reflecting discrete opening events in fiber structure. These opening events were quantized at increments in fiber length of approximately 65 nm and are attributed to unwrapping of the DNA from around individual histone octamers. Repeated stretching and relaxing of the fiber in the absence of egg extract showed that the loss of histone octamers was irreversible. The forces measured for individual nucleosome disruptions are in the range of 20-40 pN, comparable to forces reported for RNA- and DNA-polymerases.  相似文献   

2.
3.
Single-molecule techniques for stretching DNA of contour lengths less than a kilobase are fraught with experimental difficulties. However, many interesting biological events such as histone binding and protein-mediated looping of DNA, occur on this length scale. In recent years, the mechanical properties of DNA have been shown to play a significant role in fundamental cellular processes like the packaging of DNA into compact nucleosomes and chromatin fibers. Clearly, it is then important to understand the mechanical properties of short stretches of DNA. In this paper, we provide a practical guide to a single-molecule optical tweezing technique that we have developed to study the mechanical behavior of DNA with contour lengths as short as a few hundred basepairs. The major hurdle in stretching short segments of DNA is that conventional optical tweezers are generally designed to apply force in a direction lateral to the stage (see Fig. 1). In this geometry, the angle between the bead and the coverslip, to which the DNA is tethered, becomes very steep for submicron length DNA. The axial position must now be accounted for, which can be a challenge, and, since the extension drags the microsphere closer to the coverslip, steric effects are enhanced. Furthermore, as a result of the asymmetry of the microspheres, lateral extensions will generate varying levels of torque due to rotation of the microsphere within the optical trap since the direction of the reactive force changes during the extension. Alternate methods for stretching submicron DNA run up against their own unique hurdles. For instance, a dual-beam optical trap is limited to stretching DNA of around a wavelength, at which point interference effects between the two traps and from light scattering between the microspheres begin to pose a significant problem. Replacing one of the traps with a micropipette would most likely suffer from similar challenges. While one could directly use the axial potential to stretch the DNA, an active feedback scheme would be needed to apply a constant force and the bandwidth of this will be quite limited, especially at low forces. We circumvent these fundamental problems by directly pulling the DNA away from the coverslip by using a constant force axial optical tweezers. This is achieved by trapping the bead in a linear region of the optical potential, where the optical force is constant-the strength of which can be tuned by adjusting the laser power. Trapping within the linear region also serves as an all optical force-clamp on the DNA that extends for nearly 350 nm in the axial direction. We simultaneously compensate for thermal and mechanical drift by finely adjusting the position of the stage so that a reference microsphere stuck to the coverslip remains at the same position and focus, allowing for a virtually limitless observation period.  相似文献   

4.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

5.
We have carried out an investigation of the electrostatic forces involved in gradual removal of the DNA from the histone proteins in chromatin. Two simple models of DNA-histone core dissociation were considered. Calculations of the electrostatic free energy within the Poisson-Boltzmann theory gave similar results for the both models, which turned out to be in a qualitative agreement with recent optical tweezers stretching experiments measuring the force necessary to unwrap DNA from the histone core. Our analysis shows that the electrostatic interactions between the highly negatively charged polymeric DNA and the positively charged histones play a determining role in stabilizing the nucleosomes at physiological conditions.  相似文献   

6.
By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first bead is immobilized by the optical tweezers and the second by the micropipette. Movement of the micropipette allows manipulation and stretching of the DNA molecule, and the force exerted on it can be monitored simultaneously with the optical tweezers. We used this setup to study elongation of dsDNA by RecA protein and YOYO-1 dye molecules. We found that the stability of the different DNA-ligand complexes and their binding kinetics were quite different. The length of the DNA molecule was extended by 45% when RecA protein was added. Interestingly, the speed of elongation was dependent on the external force applied to the DNA molecule. In experiments in which YOYO-1 was added, a 10-20% extension of the DNA molecule length was observed. Moreover, these experiments showed that a change in the applied external force results in a time-dependent structural change of the DNA-YOYO-1 complex, with a time constant of approximately 35 s (1/e2). Because the setup provides an oriented DNA molecule, we determined the orientation of the transition dipole moment of YOYO-1 within DNA by using fluorescence polarization. The angle of the transition dipole moment with respect to the helical axis of the DNA molecule was 69 degrees +/- 3.  相似文献   

7.
Through its capability to transiently pack and unpack our genome, chromatin is a key player in the regulation of gene expression. Single-molecule approaches have recently complemented conventional biochemical and biophysical techniques to decipher the complex mechanisms ruling chromatin dynamics. Micromanipulations with tweezers (magnetic or optical) and imaging with molecular microscopy (electron or atomic force) have indeed provided opportunities to handle and visualize single molecules, and to measure the forces and torques produced by molecular motors, along with their effects on DNA or nucleosomal templates. By giving access to dynamic events that tend to be blurred in traditional biochemical bulk experiments, these techniques provide critical information regarding the mechanisms underlying the regulation of gene activation and deactivation by nucleosome and chromatin structural changes. This minireview describes some single-molecule approaches to the study of ATP-consuming molecular motors acting on DNA, with applications to the case of nucleosome-remodelling machines.  相似文献   

8.
Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (x β), lifetimes in the absence of external perturbation (τ 0) and free energies (ΔG #) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG # for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the observed different affinities determined for AlgE4-polymannuronic acid (poly-M) and AlgE4-polyalternating alginate (poly-MG) macromolecular pairs these data give important contribution to the growing understanding of the mechanisms underlying the processive mode of these enzymes.  相似文献   

9.
We report a new approach to probing DNA-protein interactions by combining optical tweezers with a high-throughput DNA curtains technique. Here we determine the forces required to remove the individual lipid-anchored DNA molecules from the bilayer. We demonstrate that DNA anchored to the bilayer through a single biotin-streptavidin linkage withstands ∼20 pN before being pulled free from the bilayer, whereas molecules anchored to the bilayer through multiple attachment points can withstand ?65 pN; access to this higher force regime is sufficient to probe the responses of protein-DNA interactions to force changes. As a proof-of-principle, we concurrently visualized DNA-bound fluorescently-tagged RNA polymerase while simultaneously stretching the DNA molecules. This work presents a step towards a powerful experimental platform that will enable concurrent visualization of DNA curtains while applying defined forces through optical tweezers.  相似文献   

10.
We have studied assembly of chromatin using Xenopus egg extracts and single DNA molecules held at constant tension by using magnetic tweezers. In the absence of ATP, interphase extracts were able to assemble chromatin against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations, indicating our experiments were in mechanochemical equilibrium. Roughly 50-nm (150-base pair) lengthening events dominated force-driven disassembly, suggesting that the assembled fibers are chiefly composed of nucleosomes. The ATP-depleted reaction was able to do mechanical work of 27 kcal/mol per 50 nm step, which provides an estimate of the free energy difference between core histone octamers on and off DNA. Addition of ATP led to highly dynamic behavior with time courses exhibiting processive runs of assembly and disassembly not observed in the ATP-depleted case. With ATP present, application of forces of 2 pN led to nearly complete fiber disassembly. Our study suggests that ATP hydrolysis plays a major role in nucleosome rearrangement and removal and that chromatin in vivo may be subject to highly dynamic assembly and disassembly processes that are modulated by DNA tension.  相似文献   

11.
As double-stranded DNA is stretched to its B-form contour length, models of polymer elasticity can describe the dramatic increase in measured force. When the molecule is stretched beyond this contour length, it shows a highly cooperative overstretching transition. We have measured the elasticity and overstretching transition as a function of monovalent salt concentration by stretching single DNA molecules in an optical tweezers apparatus. As the sodium ion concentration was decreased from 1000 to 2.57 mM, the persistence length of DNA increased from 46 to 59 nm, while the elastic stretch modulus remained approximately constant. These results are consistent with the model of Podgornik, et al. (2000, J. Chem. Phys. 113:9343-9350) using an effective DNA length per charge of 0.67 nm. As the monovalent salt concentration was decreased over the same range, the overstretching transition force decreased from 68 to 52 pN. This reduction in force is attributed to a decrease in the stability of the DNA double helix with decreasing salt concentration. Although, as was shown previously, the hydrogen bonds holding DNA strands in a helical conformation break as DNA is overstretched, these data indicate that both DNA strands remain close together during the transition.  相似文献   

12.
Optical tweezers have broad applications in studies of structures and processes in molecular and cellular biophysics. Use of optical tweezers for quantitative molecular-scale measurement requires careful calibration in physical units. Here we show that DNA molecules may be used as metrology standards for force and length measurements. Analysis of DNA molecules of two specific lengths allows simultaneous determination of all essential measurement parameters. We validate this biological-calibration method experimentally and with simulated data, and show that precisions in determining length scale factor ( approximately 0.2%), length offset ( approximately 0.03%), force scale factor ( approximately 2%), and compliance of the traps ( approximately 3%) are limited only by current measurement variation, much of which arises from polydispersity of the microspheres ( approximately 2%). We find this procedure to be simpler and more convenient than previous methods, and suggest that it provides an easily replicated standard that can insure uniformity of measurements made in different laboratories.  相似文献   

13.
Bednar J  Dimitrov S 《The FEBS journal》2011,278(13):2231-2243
About a decade ago, the elastic properties of a single chromatin fiber and, subsequently, those of a single nucleosome started to be explored using optical and magnetic tweezers. These techniques have allowed direct measurements of several essential physical parameters of individual nucleosomes and nucleosomal arrays, including the forces responsible for the maintenance of the structure of both the chromatin fiber and the individual nucleosomes, as well as the mechanism of their unwinding under mechanical stress. Experiments on the assembly of individual chromatin fibers have illustrated the complexity of the process and the key role of certain specific components. Nevertheless a substantial disparity exists in the data reported from various experiments. Chromatin, unlike naked DNA, is a system which is extremely sensitive to environmental conditions, and studies carried out under even slightly different conditions are difficult to compare directly. In this review we summarize the available data and their impact on our knowledge of both nucleosomal structure and the dynamics of nucleosome and chromatin fiber assembly and organization.  相似文献   

14.
15.
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.  相似文献   

16.
Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DNA at stretching forces below 0.6 pN, effects that can be reversed with 2.7-pN force or in 200 mM monovalent salt concentrations. Consecutive tens-of-nanometer bending events suggest that H1 binds to naked DNA in buffer at high stoichiometries. In egg extracts, single DNA molecules assemble into nucleosomes and undergo rapid compaction. Histone H1 at endogenous physiological concentrations increases the DNA compaction rate during chromatin assembly under 2-pN force and decreases it during disassembly under 5-pN force. In egg cytoplasm, histone H1 protects sperm nuclei undergoing genome-wide decondensation and chromatin assembly from becoming abnormally stretched or fragmented due to astral microtubule pulling forces. These results reveal functional ramifications of H1 binding to DNA at the single-molecule level and suggest an important physiological role for H1 in compacting DNA under force and during chromatin assembly.  相似文献   

17.
18.
Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators.  相似文献   

19.
Bacteria can acquire genetic diversity, including antibiotic resistance and virulence traits, by horizontal gene transfer. In particular, many bacteria are naturally competent for uptake of naked DNA from the environment in a process called transformation. Here, we used optical tweezers to demonstrate that the DNA transport machinery in Bacillus subtilis is a force-generating motor. Single DNA molecules were processively transported in a linear fashion without observable pausing events. Uncouplers inhibited DNA uptake immediately, suggesting that the transmembrane proton motive force is needed for DNA translocation. We found an uptake rate of 80 +/- 10 bp s(-1) that was force-independent at external forces <40 pN, indicating that a powerful molecular machine supports DNA transport.  相似文献   

20.
The end-to-end stretching of a duplex DNA oligonucleotide has been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) simulations and atomic force microscopy (AFM) experiments. Near quantitative agreement between the calculations and experiments was obtained for both the extension length and forces associated with strand separation. The PMF calculations show that the oligonucleotide extends without a significant energetic barrier from a length shorter than A-DNA to a length 2.4 times the contour length of B-DNA at which the barrier to strand separation is encountered. Calculated forces associated with the barrier are 0.09±0.03 nN, based on assumptions concerning tip and thermal-activated barrier crossing contributions to the forces. Direct AFM measurements show the oligonucleotide strands separating at 2.6±0.8 contour lengths with a force of 0.13±0.05 nN. Analysis of the energies from the MD simulations during extension reveals compensation between increases in the DNA-self energy and decreases in the DNA-solvent interaction energy, allowing for the barrierless extension of DNA beyond the canonical B form. The barrier to strand separation occurs when unfavorable DNA interstrand repulsion cannot be compensated for by favorable DNA-solvent interactions. The present combination of single molecule theoretical and experimental approaches produces a comprehensive picture of the free energy surface of biological macromolecular structural transitions. Received: 2 June 1998 / Revised version: 25 January 1999 / Accepted: 11 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号