首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell surface enzyme beta 1-4 galactosyl transferase (galtase) has been implicated in a number of cellular events involving adhesion and recognition, among them migration of neural crest and mesenchymal cells as well as initiation and elongation of neurites from PC12 cells. Results presented here demonstrate that reagents that specifically alter galtase activity modulate the rate of neurite outgrowth from chick dorsal root ganglia on substrata coated with the large extracellular matrix glycoprotein, laminin (LN), a known substrate for galtase activity. Not all neurites responded equally to reagent addition, and in every experiment a subset of neurites was ostensibly unaffected by reagent, even at the highest concentration tested. Those neurites that were affected demonstrated an ability to adapt to the continued presence of reagent and resume normal elongation. These results support the hypothesis that cell surface galtase activity plays an important role in mediating neurite elongation and suggest further that differential expression of galtase at the nerve growth cone might contribute to axonal guidance through glycoconjugate-rich environments in vivo.  相似文献   

2.
Protein kinase C is involved in laminin stimulation of neurite outgrowth   总被引:14,自引:0,他引:14  
J L Bixby 《Neuron》1989,3(3):287-297
We are investigating the intracellular events involved in the induction of neurite outgrowth. The phorbol ester TPA, an activator of protein kinase C, potentiates neurite outgrowth from ciliary ganglion neurons cultured on suboptimal laminin concentrations, but not on optimal laminin concentrations. TPA also stimulates growth on fibronectin and collagen similar to that observed on laminin under control conditions. Manipulations that elevate intracellular cAMP levels (expected to activate A kinase) reduce neurite outgrowth on laminin. The protein kinase C inhibitors H7 and sphingosine inhibit neurite outgrowth on laminin in a reversible and dose-dependent manner. H7 does not inhibit the process outgrowth induced by concanavalin A in the same neurons. The results suggest that activation of protein kinase C is an important step in the neurite outgrowth caused by laminin binding to its receptor(s).  相似文献   

3.
D Edgar  R Timpl  H Thoenen 《The EMBO journal》1984,3(7):1463-1468
The survival of cultured chick sympathetic neurons and the outgrowth of neurites were stimulated by the basement membrane protein laminin coated onto polyornithine culture substrates. The survival-potentiating activity was dependent on the presence of nerve growth factor. Both effects of laminin could be completely inhibited by affinity-purified antibodies against laminin fragment 3, the product of a limited proteolysis that corresponds to the heparin-binding globular domain at the end of the long arm of the laminin molecule. Antibodies against other laminin fragments were inactive, including those against previously determined cell-binding domains. A large laminin fragment, E8, was produced by brief elastase digestion and shown to consist of fragment 3 and an adjacent rod-like structure. Although lacking the cell binding domains, fragment E8 potentiated both neuronal survival and neurite outgrowth, and these effects could be blocked by antibodies against fragment 3. Weak survival and neurite potentiating activity was also detected in another fragment corresponding to the short arms of laminin, but as these effects were not inhibited by any of the antibodies tested they probably arose de novo during proteolysis. The heparin-binding domain of laminin is therefore responsible for its effects on neurons.  相似文献   

4.
A method for isolation of the neurite outgrowth promoting fragment of mouse laminin (fragment 8) is described in this paper. Besides producing excellent yields, this method was shown to be fast and practical, since it is based on a single step which consists in an ion exchange chromatography of elastase digested laminin.  相似文献   

5.
6.
Laminins are expressed in specific tissues and are involved in various biological activities including promoting cell adhesion, growth, migration, neurite outgrowth, and differentiation. The laminin alpha3 chain is mainly located in the skin and is also expressed in the floor plate of the developing neural tube. Previously, we showed that the human laminin alpha3 chain LG4 module binds to syndecan-2/4, a membrane-associated proteoglycan, and promotes human fibroblast adhesion. Here, we have evaluated the neurite outgrowth activity of the laminin alpha3 chain LG4 and LG5 modules. Three overlapping recombinant proteins, which contained LG4 and/or LG5 modules of the human laminin alpha3 chain, were prepared using a mammalian cell expression system. Two proteins, rec-alpha3LG4-5 and rec-alpha3LG4, promoted cell attachment and neurite outgrowth of rat pheochromocytoma PC12 cells, but rec-alpha3LG5 was inactive. Twenty-two peptides covering the entire LG4 module were synthesized and tested for cell attachment and neurite outgrowth activity to identify active sites of the LG4 module. A3G75 (KNSFMALYLSKG, alpha3 chain 1411-1422) and A3G83 (GNSTISIRAPVY, alpha3 chain 1476-1487) promoted PC12 cell attachment and neurite outgrowth. Additionally, A3G75 and A3G83 inhibited PC12 cell attachment to rec-alpha3LG4. These results suggest that the A3G75 and A3G83 sites are important for PC12 cell attachment and neurite outgrowth in the laminin alpha3 chain LG4 module. We also conjugated the A3G75 and A3G83 peptides on chitosan membranes to test their potential as bio-materials. These peptide-conjugated chitosan membranes were more active for neurite outgrowth than the peptide-coated plates. These results suggest that the A3G75- and A3G83-conjugated chitosan membranes are applicable as bio-medical materials for neural tissue repair and engineering.  相似文献   

7.
The laminin alpha4 chain is widely distributed in various mesodermal tissues, including the perineurium of peripheral nerves, dorsal root ganglion (DRG), skeletal muscle, and capillaries, and plays important roles in synaptic specialization at the neuromuscular junction and in microvascular formation. The C-terminal globular domain (G domain) of the laminin alpha4 chain was previously found to be critical for heparin binding and cell attachment activity. Here, we focused on neurite outgrowth activity of the laminin alpha4 chain G domain. We found that the recombinant alpha4 chain G domain protein (rec-alpha4G) promoted neurite outgrowth of rat pheochromocytoma PC12 cells. When 114 overlapping synthetic peptides that covered the entire G domain were tested for neurite outgrowth activity, nine peptides were active, but the 105 remaining peptides did not exhibit activity. Three of the nine active peptides, A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), and A4G107 (VIRDSNVVQLDV), strongly promoted neurite outgrowth of PC12 cells. A4G107 was found to form amyloid-like fibrils in Congo red, X-ray, and electron microscopy analyses. We also synthesized cyclic peptides to evaluate their conformational requirements. Cyclic peptide A4G82X (cyc-A4G82X;TLFLAHGRLVFX, where X is norleucine) significantly enhanced neurite outgrowth activity, but the rest of the cyclic peptides eliminated the activity. The A4G82 sequence is located on the loop region, suggesting that the activity of A4G82 is required for a loop conformation. These peptides also exhibited neurite outgrowth activity with dorsal root ganglion (DRG) explants and with DRG cells from E14.5 mouse embryos, indicating that they are active in both neuronal cell lines and native neuronal cells. Taken together, the data suggest that the peptides from the laminin alpha4 chain G domain promote neurite outgrowth activity via a specific conformation.  相似文献   

8.
Immobilized extracellular matrix proteins and neurotrophins have been extensively studied to enhance neuronal adhesion and proliferation on surfaces for applications in nerve tissue engineering and neuroprosthetic devices. This article describes how the coimmobilization of laminin, an extracellular matrix protein and nerve growth factor (NGF), a neurotrophin can enhance neurite outgrowth observed separately with each type of molecule. In the absence of immobilized NGF, PC12 neurite outgrowth is influenced strongly by the presence of NGF in solution and unaffected by significant increases in laminin surface density (18.7–93.5 ng/mm2). However, when both laminin and NGF are immobilized together, the surface density of laminin is an important factor in determining whether or not the neurite outgrowth‐promoting effect of NGF can be obtained. PC12 neurite outgrowth on surfaces with coimmobilized laminin and NGF with surface densities of 27.6 ng/mm2 and 1.4 ng/mm2, respectively, are similar to that observed on surfaces with immobilized laminin and dissolved NGF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
We report a study of the substratum and medium requirements for attachment and neurite outgrowth by cells of the pheochromocytoma-derived PC12 line. In attachment medium containing both Ca2+ and Mg2+, more than 50% of cells attached within 1 hr to petri dishes coated with native collagen Types I/III or II, native or denatured collagen Type IV, laminin, wheat germ agglutinin (WGA), or poly-L-lysine; attachment to dishes coated with nerve growth factor (NGF) was only about 20% and attachment to uncoated dishes or to dishes coated with fibronectin or gelatin was almost nil. Neither prior culturing in the presence of NGF nor addition of NGF to the attachment medium significantly affected the extent of attachment to collagen or laminin. With Ca2+ (1 mM) as the sole divalent cation, cells attached normally to WGA, polylysine, and NGF, but failed to attach to collagen or laminin. With Mg2+ (1 mM) as the only divalent cation, attachment to all substrata was about the same as in medium with both Ca2+ and Mg2+. Like the ionic requirements, the kinetics of attachment, insensitivity to protease treatment of the cells, and inhibition by low temperature and sodium azide were similar for PC12 attachment to collagen and laminin, suggesting that a common molecular mechanism may underlie attachment to these substrata. The only significant difference observed was that addition of WGA (30 micrograms/ml) to the attachment medium inhibited attachment to collagen but promoted attachment to laminin. Finally, PC12 cells extended neurites on laminin, on native collagens I/III, II, and IV, and on denatured collagen IV; they did not extend neurites on denatured collagens I/III or II, NGF, or WGA. Neurite outgrowth on collagen and laminin occurred with Mg2+ as the sole divalent cation. These results suggest that the same Mg2+-dependent adhesion mechanism operates at the cell body and at the growth cone.  相似文献   

10.
Neurite outgrowth from PC12 pheochromocytoma cells, as well as from peripheral and central nervous system neurons in vitro, is mediated by the extracellular matrix molecule, laminin. We have recently shown that mesenchymal cell spreading and migration on laminin is mediated, in part, by the cell surface enzyme, beta 1,4 galactosyltransferase (GalTase). GalTase is localized on lamellipodia of migrating cells where it functions as a laminin receptor by binding to specific N-linked oligosaccharides in laminin (Runyan et al., 1988; Eckstein and Shur, 1989). In the present study, we examined whether GalTase functions similarly during neutrite outgrowth on laminin using biochemical and immunological analyses. PC12 neurite outgrowth was inhibited by reagents that perturb cell surface GalTase activity, including anti-GalTase IgG and Fab fragments, as well as the GalTase modifier protein alpha-lactalbumin. Control reagents had no effect on neurite outgrowth. Furthermore, blocking GalTase substrates on laminin matrices by earlier galactosyltion or enzymatic removal of GalTase substrates also inhibited neurite outgrowth. Conversely, neurite outgrowth was enhanced by the addition of UDP-galactose, which completes the GalTase enzymatic reaction, while inappropriate sugar nucleotides had no effect. The effects of all these treatments were dose and/or time dependent. Surface GalTase was shown to function during both neurite initiation and elongation, although the effects of GalTase perturbation were most striking during the initiation stages of neurite formation. Consistent with this, surface GalTase was localized by indirect immunofluorescence to the growth cone and developing neurite. Collectively, these results demonstrate that GalTase mediates the initiation of neurite outgrowth on laminin, and to a lesser extent, neurite elongation. Furthermore, this study demonstrates that process extension from both mesenchymal cells and neuronal cells is partly dependent upon specific oligosaccharide residues in laminin.  相似文献   

11.
The amyloid precursor protein (APP) is a transmembrane protein expressed in several cell types. In the nervous system, APP is expressed by glial and neuronal cells, and several lines of evidence suggest that it plays a role in normal and pathological phenomena. To address the question of the actual function of APP in normal developing neurons, we undertook a study aimed at blocking APP expression using antisense oligonucleotides. Oligonucleotide internalization was achieved by linking them to a vector peptide that translocates through biological membranes. This original technique, which is very efficient and gives direct access to the cell cytosol and nucleus, allowed us to work with extracellular oligonucleotide concentrations between 40 and 200 nM. Internalization of antisense oligonucleotides overlapping the origin of translation resulted in a marked but transient decrease in APP neosynthesis that was not observed with the vector peptide alone, or with sense oligonucleotides. Although transient, the decrease in APP neosynthesis was sufficient to provoke a distinct decrease in axon and dendrite outgrowth by embryonic cortical neurons developing in vitro. The latter decrease was not accompanied by changes in the spreading of the cell bodies. A single exposure to coupled antisense oligonucleotides at the onset of the culture was sufficient to produce significant morphological effects 6, 18, and 24 h later, but by 42 h, there were no remaining significant morphologic changes. This report thus demonstrates that amyloid precursor protein plays an important function in the morphological differentiation of cortical neurons in primary culture.  相似文献   

12.

Background

The apolipoprotein E4 (apoE4) genotype is a major risk factor for developing late-onset Alzheimer’s disease (AD). Inheritance of apoE4 is also associated with impairments in olfactory function in early stages of AD. In this project we examined the effects of the three common isoforms of human apoE (apoE2, apoE3, and apoE4) on neuronal differentiation and neurite outgrowth in explant cultures of mouse olfactory epithelium (OE).

Results

The OE cultures derived from apoE-deficient/knockout (KO) mice have significantly fewer neurons with shorter neurite outgrowth than cultures from wild-type (WT) mice. Treatment of the apoE KO culture with either purified human apoE2 or with human apoE3 significantly increased neurite outgrowth. In contrast, treatment with apoE4 did not have an effect on neurite outgrowth. The differential effects of human apoE isoforms on neurite outgrowth were abolished by blocking the low-density lipoprotein receptor-related protein (LRP) with lactoferrin and receptor-associated protein (RAP).

Conclusion

ApoE2 and apoE3 stimulate neurite outgrowth in OE cultures by interacting with the lipoprotein receptor, LRP. ApoE4, the isoform associated with AD, failed to promote neurite outgrowth, suggesting a potential mechanism whereby apoE4 may lead to olfactory dysfunction in AD patients.  相似文献   

13.
Previous work reported that nerve growth factor-stimulated neurite outgrowth in PC-12 cells could be altered by exposure to parallel alternating current (AC) and direct current (DC) magnetic fields under a variety of exposure conditions, producing results that are consistent with the predictions of the ion parametric resonance (IPR) model. The credibility of these results, considered extraordinary by some scientists, could be strengthened if the cell response were found to persist under alternate assay conditions. We replaced part of our standard assay procedure with a double blind procedure. This new procedure obscured 1) whether a particular set of dishes of cells was exposed or not, and 2) which individual dish was in which exposure system. The goal was to determine whether the previously observed responses of PC-12 cells to magnetic fields would be sufficiently robust to decode the imposed blinding, thereby removing any question of experimenter bias in reported results. We placed three coded dishes of cells in each of two otherwise identical exposure systems, one not energized and one energized to produce exposure conditions predicted to maximally suppress neurite outgrowth (Bdc of 36.6 μT, parallel 45 Hz AC of 23.8 μT rms). Each of the six dishes were recoded before assay to further obscure the exposure identity of any individual dish. The combined results of four distinct runs of these double blind experiments unequivocally demonstrated that 1) there was a clear, distinctive, repeatable consistency with the actual energization of the exposure systems and location of each dish, and with the predictions of the IPR model; 2) only the explicitly stated experimental variables influenced the experiment; and 3) the reported response of the cells was very improbably due to chance (P = .000024). Bioelectromagnetics 19:204–209, 1998. © 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group consisting of both United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    14.
    N-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model. PC12 cells stably transfected with GnT-VB consistently showed an enhanced rate of nerve growth factor (NGF)-induced neurite outgrowth on collagen and laminin substrates. Levels of TrkA receptor phosphorylation and downstream ERK activation induced by NGF were not influenced by GnT-VB expression. No significant difference was observed in the rate of neurite outgrowth when cells were cultured on non-coated culture dishes, indicating that integrin-ECM interaction is required for the stimulatory effects. Neurite outgrowth induced by manganese-dependent activation of beta1 integrin on collagen and laminin substrates, however, showed a significant increase in neurite length for the PC12/GnT-VB cells, compared with control cells, suggesting that the enhancement is most likely mediated by alteration of beta1 integrin-ECM interaction by GnT-VB. These results demonstrate that GnT-VB expression can modulate the rate of neurite outgrowth by affecting beta1 integrin-ECM interaction.  相似文献   

    15.
    When culture medium, conditioned by any of several cell types, is applied to a polycationic substratum, a substance is adsorbed that causes neurons cultured on that substratum to extend processes (neurites) rapidly and profusely. We have purified the factor responsible for this effect from medium conditioned by bovine corneal endothelial cells, and have shown that it is composed of the glycoprotein laminin and two associated laminin-binding molecules: a sulfated protein known as entactin, and a large heparan sulfate proteoglycan. Of these molecules, only laminin was found to be present throughout the purification in all fractions possessing neurite outgrowth-promoting activity and absent from all fractions lacking activity. Laminin, purified from other sources, has been shown previously to promote extensive outgrowth by cultured neurons. These and other data presented here support the conclusion that laminin is responsible for the neurite outgrowth-promoting activity of the conditioned medium factor. Evidence is also presented that the association of a proteoglycan with laminin promotes efficient attachment of laminin to polycationic substrata, particularly in the presence of competing molecules.  相似文献   

    16.
    1. C6 glioma cells were transfected with two constructs carrying C-terminal laminin alpha1-chain sequences of 117 and 114 bp length, respectively. These sequences are specifically known to code for peptides which have neurite-promoting activity. 2. The stable expression and secretion of the two peptides was detected by Northern and Western blot analysis. 3. Primary neuronal cultures derived from embryonic mouse forebrain were cocultured with these transfected cells and exhibited a substantial increase in neurite outgrowth and in survival time. Conditioned media from the transfected cells generated similar effects. 4. Organotypic cultures from embryonic mouse brain were used as a second system as being closer to the in vivo situation. Again, coculture of brain slices with transfected cells or treatment with laminin peptide-containing media increased neuronal outgrowth.  相似文献   

    17.
    Acetylcholinesterase (AChE) has been reported to be involved in the modulation of neurite outgrowth. To understand the role played by different domains, we transfected neuroblastoma cells with three constructs containing the invariant region of AChE, differing in the exon encoding the C-terminus and therefore in AChE cellular fate and localization. All isoforms increased neurite extension, suggesting the involvement of the invariant domain [A. De Jaco, G. Augusti-Tocco, S. Biagioni, Alternative AChE molecular forms exhibit similar ability to induce neurite outgrowth, J. Neurosci. Res. 70 (2002) 756-765]. The peripheral anionic site (PAS) is encoded by invariant exons and represents the domain involved in non-cholinergic functions of AChE. Masking of PAS with fasciculin results in a significant decrease of neurite outgrowth in all clones overexpressing AChE. A strong reduction was also observed when clones were cultured on fibronectin. Treatment of clones with fasciculin, therefore masking PAS, abolished the fibronectin-induced reduction. The inhibition of the catalytic site cannot revert the fibronectin effect. Finally, when clones were cultured on fibronectin in the presence of heparin, a ligand of fibronectin, the inhibitory effect was completely reversed. Our results indicate that PAS could directly or indirectly mediate AChE/fibronectin interactions.  相似文献   

    18.
    The process of mammalian implantation has been investigated using an in vitro model system wherein the trophoblast cells of mouse blastocysts attach to and outgrowth on tissue culture plates containing a complex medium. We now report that two extracellular matrix glycoproteins, fibronectin and laminin, when individually precoated on tissue culture plates promoted in vitro attachment and outgrowth of mouse blastocysts in serum-free medium. The kinetics of attachment and outgrowth processes in the presence of either of these two proteins were identical to that observed in complex, serum-containing medium. In contrast, plates containing a collagen matrix or pretreated with a variety of other serum proteins or various lectins failed to support in vitro attachment and outgrowth of blastocysts. Because all components of the culture medium are defined and both fibronectin and laminin are known components of the basement membrane of the endometrium, this in vitro system offers considerable advantages over the serum supplemented system to study in vitro implantation.  相似文献   

    19.
    Outgrowth of neurites in culture is used for assessing neurotrophic activity. Neurite measurements have been performed very slowly using manual methods or more efficiently with interactive image analysis systems. In contrast, medium-throughput and noninteractive image analysis of neurite screens has not been well described. The authors report the performance of an automated image acquisition and analysis system (IN Cell Analyzer 1000) in the neurite assay. Neuro-2a (N2a) cells were plated in 96-well plates and were exposed to 6 conditions of retinoic acid. Immunofluorescence labeling of the cytoskeleton was used to detect neurites and cell bodies. Acquisition of the images was automatic. The image set was then analyzed by both manual tracing and automated algorithms. On 5 relevant parameters (number of neurites, neurite length, total cell area, number of cells, neurite length per cell), the authors did not observe a difference between the automated analysis and the manual analysis done by tracing. These data suggest that the automated system addresses the same biology as human scorers and with the same measurement precision for treatment effects. However, throughput of the automated system is orders of magnitude higher than with manual methods.  相似文献   

    20.
    The mammalian tooth pulp becomes innervated by nociceptive and sympathetic axons relatively late during development, when part of the root has formed. In the adult, regenerating axons from an injured tooth nerve or sprouting axons from uninjured nerves in the vicinity rapidly reinnervate denervated tooth pulps. These observations indicate that tooth pulp tissue can use molecular factors to attract pulpal axons from local nerve trunks. The present study examines the hypothesis that these factors include nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF). Explants of trigeminal ganglia from neonatal rat pups showed a distinct neurite outgrowth when co-cultured with pulpal explants collected from molar teeth of 12-day old pups, or after application of a pulpal extract. Control cultures, containing single ganglionic explants, or explants co-cultured with heat-treated pulpal tissue, exhibited a sparse neurite outgrowth. Exogenous NGF and/or GDNF, but not exogenous BDNF, stimulated neurite outgrowth from ganglionic explants. Unexpectedly, application of antibodies against NGF, BDNF and/or GDNF to co-cultures of ganglionic and pulpal explants did not inhibit neuritogenesis. Control experiments showed that IgG molecules readily penetrate the gel used for culture and that even very high concentrations of NGF and GDNF antibodies in combination failed to block neurite growth. On the basis of these data we suggest that other as yet unknown neurite-promoting factors might be present and active in TG/pulpal co-cultures.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号