首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
It has been suggested that during repeated long-term stretch-shortening cycle (SSC) exercise the decreased neuromuscular function may result partly from alterations in stiffness regulation. Therefore, interaction between the short latency stretch-reflex component (M1) and muscle stiffness and their influences on muscle performance were investigated before and after long lasting SSC exercise. The test protocol included various jumps on a sledge ergometer. The interpretation of the sensitivity of the reflex was based on the measurements of the patellar reflexes and the M1 reflex components. The peak muscle stiffness was measured indirectly and calculated as a coefficient of the changes in the Achilles tendon force and the muscle length. The fatigue protocol induced a marked impairment of the neuromuscular function in maximal SSC jumps. This was demonstrated by a 14.1%–17.7% (n.s. –P < 0.001) reduction in the mean eccentric forces and a 17.3%–31.8% (n.s. –P < 0.05) reduction in the corresponding M1 area under the electromyograms. Both of these methods of assessing the short latency reflex response showed a clear deterioration in the sensitivity of the reflex after fatigue (P < 0.05–0.001). This was also the case for the eccentric peak stiffness of the soleus muscle which declined immediately after fatigue by 5.4% to 7.1% (n.s. –P < 0.05) depending on the jump condition. The results observed would suggest that the modulation of neural input to the muscle was at least partly of reflex origin from the contracting muscle, and furthermore, that the reduced muscle stiffness which accompanied the decreased reflex sensitivity could have been partly responsible for the weakened muscle performance due to impaired utilization of elastic energy. Accepted: 28 April 1998  相似文献   

4.
Experiments were carried out to examine interaction between mechanical changes of the muscle-tendon unit and reduced reflex sensitivity after repeated and prolonged passive muscle stretching (RPS). There is some evidence that this interaction might be relevant also during active stretch-shortening cycle type of fatigue tasks. The results demonstrated a clear deterioration of voluntarily and electrically induced muscle contractions after RPS. Maximal voluntary contraction (MVC), average electromyographic activities of the gastrocnemius and soleus muscles, and maximal twitch contraction decreased on average by 13.8, 10.4, 7.6, and 16.8%, respectively. In addition, there was a 14% lengthening in the total duration of the twitch. MVCs measured at different ankle joint angles revealed a downward and rightward shift in the torque-fascicle length curve after RPS. Interestingly, there was a crossing in the torque-fascicle length curves while measured at different activation levels but at the same joint angle before and after RPS. Even though no changes were observed in the activation level during MVCs, all the reflex parameters showed a clear reduction after RPS. This study presents evidence that repeated and prolonged passive muscle stretching can lead to some modification of material behavior of the aponeurosis-tendon system, such as stress relaxation and/or plastic deformation. In addition, altered material properties seem to affect proprioceptive feedback and, therefore, the motor unit activation in proportion to the contractile failure.  相似文献   

5.
It was studied in rats, if chronic morphine treatment induces a supersensitivity of dopamine receptors in brain. The rats were treated twice daily for 8–11 days with single doses of morphine, increasing from 10 to 20 mg/kg i.p. The experiments were carried out 16–20 hours after the last injection of morphine. After chronic morphine treatment, the potency of apomorphine in lowering the striatal dopamine turnover was increased. On the other hand, apomorphine was not more potent in inducing stereotypies (sniffing, licking, gnawing) after chronic morphine administration than in saline controls. Finally, dopamine activated the adenylate cyclase in striatal homogenates of rats after chronic morphine treatment to a similar extent as in homogenates of control rats. The results suggest that a supersensitivity of dopamine receptors in brain is not necessarily involved in symptoms of an increased dopaminergic activity after chronic morphine application.  相似文献   

6.
Passive muscle stretching can be used in vivo to assess the viscoelastic properties of the entire musculo-articular complex, but does not allow the specific determination of the muscle or tendon viscoelasticity. In this respect, the local muscle hardness (LMH) of the gastrocnemius medialis (GM) belly was measured during a passive ankle stretching of 10 subjects using transient elastography. A Biodex isokinetic dynamometer was used to stretch ankle plantar flexors, to measure ankle angle, and the passive torque developed by the ankle joint in resistance to the stretch. Results show that the LMH increased during the stretching protocol, with an averaged ratio between maximal LMH and minimal LMH of 2.62+/-0.46. Furthermore, LMH-passive torque relationships were nicely fitted using a linear model with mean correlation coefficients (R(2)) of 0.828+/-0.099. A good reproducibility was found for the maximal passive torque (ICC=0.976, SEM=2.9Nm, CV=5.5%) and the y-intercept of the LMH-passive torque relationship (ICC=0.893, SEM=105Pa, CV=7.8%). However, the reproducibility was low for the slope of this relationship (ICC=0.631, SEM=10.35m(-2), CV=60.4%). The y-intercept of the LMH-passive torque relationship was not significantly changed after 10min of static stretching. This result confirms the finding of a previous study indicating that changes in passive torque following static stretching could be explained by an acute increase in muscle length without any changes in musculo-articular intrinsic mechanical properties.  相似文献   

7.
8.
The mechanisms related to the acute and delayed secondary impairment of the stretch reflex function were investigated after long-lasting stretch-shortening cycle exercise. The results demonstrated a clear deterioration in muscle function immediately after fatigue, which was accompanied by a clear reduction in active and passive reflex sensitivity. For active and passive stretch reflexes, this reduction was biphasic (P < 0.05 to P < 0.001). However, for the ratio of the electrically induced maximal Hoffmann reflex to the maximal mass compound action potential, only one significant reduction was seen immediately after fatigue (71.2%, P < 0.01). A similar significant (P < 0.01) decrease in the stretch-resisting force of the muscle was also detected. Clear increases were found in the indirect markers of muscle damage (serum creatine kinese activity and skeletal troponin I), which could imply the occurrence of ultrastructural muscle damage. It is suggested that the acute reduction in reflex sensitivity is of reflex origin and due to two active mechanisms, disfacilitation and presynaptic inhibition. However, the delayed second decline in the sensitivity of some reflex parameters may be attributable to the secondary injury, because of some inflammatory response to the muscle damage. This might emphasize the role of presynaptic inhibition via group III and IV muscle afferents.  相似文献   

9.
This study examined the effects of supplemental beta-hydroxy-beta-methylbutyrate (HMB) on muscle damage as a result of intense endurance exercise. Subjects (n = 13) were paired according to their 2-mile run times and past running experience. Each pair was randomly assigned a treatment of either HMB (3 g/day) or a placebo. After 6 wk of daily training and supplementation, all subjects participated in a prolonged run (20-km course). Creatine phosphokinase and lactate dehydrogenase (LDH) activities were measured before and after a prolonged run to assess muscle damage. The placebo-supplemented group exhibited a significantly greater (treatment main effect, P = 0.05) increase in creatine phosphokinase activity after a prolonged run than did the HMB-supplemented group. In addition, LDH activity was significantly lower (treatment main effect, P = 0.003) with HMB supplementation compared with the placebo-supplemented group. In conclusion, supplementation with 3.0 g of HMB results in a decreased creatine phosphokinase and LDH response after a prolonged run. These findings support the hypothesis that HMB supplementation helps prevent exercise-induced muscle damage.  相似文献   

10.
11.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The influence of spaceflight on the distribution of succinate dehydrogenase (SDH) activity throughout the cross section of fibers in the soleus was studied in five male rats and in five rats maintained under ground-based simulated flight conditions (control). The flight (COSMOS 1887) was 12.5 days in duration, and the animals were killed approximately 2 days after return to 1 G. Fibers were classified as slow-twitch oxidative or fast-twitch oxidative-glycolytic in histochemically prepared tissue sections. The distribution of SDH activity throughout the cross section of 20-30 fibers (each type) was determined using quantitative histochemical and computer-assisted image analysis techniques. In all the fibers, the distribution of SDH activity was significantly higher in the subsarcolemmal than in intermyofibrillar region. After spaceflight the entire regional distribution of SDH activity was significantly altered in the slow-twitch oxidative fibers. The fast-twitch oxidative-glycolytic fibers of the spaceflight muscles exhibited a significantly lower SDH activity only in their subsarcolemmal region. These data suggest that when determining the influence of spaceflight on muscle fiber oxidative metabolism enzymes, it is important to consider the location of the enzyme throughout the cross section of a fiber. Furthermore the functional properties of the soleus that depend on the metabolic support of mitochondria in the subsarcolemmal region may be primarily affected by exposure to microgravity.  相似文献   

13.
The aim of this study was to determine whether the effects of hypoxia on aortic contractility reflect a decrease in smooth muscle activation [phosphorylation of the 20-kDa myosin regulatory light chain (LC(20))], the capacity for myofibrillar ATP hydrolysis (mATPase activity), or both. Our results indicate that, in endothelium-denuded aortic rings from rats exposed to hypoxia for 48 h (inspired O(2) concentration = 10%), contractions to phenylephrine and potassium chloride (KCl) are impaired compared with rings from normoxic rats. The proportion of phosphorylated to total LC(20) during aortic contraction induced by 10(-5) M phenylephrine was reduced after hypoxia (51.4 +/- 5.4% in normoxic control rats vs. 32.5 +/- 4.7% in hypoxic rats, P < 0.01). Aortic mATPase activity was also decreased (maximum ATPase rate = 29.6 +/- 3.4 and 20.7 +/- 3.7 nmol. min(-1). mg protein(-1) in control and hypoxic rats, respectively, P < 0.05). Neither proliferation nor dedifferentiation of aortic smooth muscle was evident in this model; immunostaining for smooth muscle expression of the proliferating cell nuclear antigen was negative and smooth muscle-specific isoforms of myosin heavy chains, h-caldesmon, and calponin were increased, not decreased, after hypoxic exposure. Decreased aortic reactivity after hypoxia is associated with both impairment of smooth muscle activation and diminished capacity of the actomyosin complex, once activated, to hydrolyze ATP. These changes cannot be attributed to smooth muscle dedifferentiation or to reduced contractile protein expression.  相似文献   

14.
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity.  相似文献   

15.
This is a report of experiments carried out on the medial gastrocnemius muscle of the anesthetized cat, investigating the effects of eccentric contractions carried out at different muscle lengths on the passive and active length-tension relationships. In one series of experiments, the motor supply to the muscle was divided into three approximately equal parts; in the other, whole muscles were used. Fifty eccentric contractions were carried out over different regions of the active length-tension curve for each partial or whole muscle. Active and passive length-tension curves were measured before and after the eccentric contractions. When eccentric contractions were carried out at longer lengths, there was a larger shift of the optimum length for active tension in the direction of longer muscle lengths and a larger fall in peak isometric tension. Passive tension was higher immediately after the eccentric contractions, and if the muscle was left undisturbed for 40 min, it increased further to higher values, particularly after contractions at longer lengths. A series of 20 passive stretches of the same speed and amplitude and covering the same length range as the active stretches, reduced the passive tension which redeveloped over a subsequent 40-min period. It is hypothesized that there are two factors influencing the level of passive tension in a muscle after a series of eccentric contractions. One is injury contractures in damaged muscle fibers tending to raise passive tension; the other is the presence of disrupted sarcomeres in series with still-functioning sarcomeres tending to reduce it.  相似文献   

16.
17.
The purpose of the study was to determine whether muscle force, power, and optimal length were affected by 4 weeks of static or ballistic stretching. Twenty-nine males (age, 18-60 years) performed 4 maximal hip extensions to measure peak torque (PT), rate of torque development (RTD), work (W), and PT angle (PTA). Then, participants completed 4 weeks of static or ballistic flexibility training of the hip extensors followed by repetition of the testing protocol. After training, PT increased 5.3 +/- 19.0% in the static group (SG), 7.8 +/- 12.7% in the ballistic group (BG), and 6.1 +/- 17.9% in the control group (CG). RTD increased 4.8 +/- 22.7% in the SG, 3.6 +/- 28.0% in the BG and 9.7 +/- 24.0% in the CG. W increased 3.9 +/- 7.0% in the SG, 14.7 +/- 27.4% in the BG, and 5.5 +/- 9.5% in the CG. PTA changed little with a -1.6 +/- 6.6% decrease in the SG and increases of 0.86 +/- 4.1% in the BG and 0.18 +/- 8.7% in the CG. None of the results were statistically different between stretching group and CG (alpha = 0.05). These data suggest that 4 weeks of stretching have little effect on muscle strength, power, W, or length-tension relationship. PTA changed little, suggesting that a lengthening of the muscle with stretching did not occur. It is suggested that individuals can routinely stretch following exercise to maintain flexibility but should avoid stretching prior to exercise requiring high levels of muscle force. Before exercise that requires high muscular forces, individuals may perform dynamic, sport-specific exercises to increase blood flow, metabolic activity, temperature, and compliance of the muscle.  相似文献   

18.
19.
20.
Ovariectomized ewes, 10 clover disease infertility and 10 controls, were injected daily for 3 days with 25 micrograms oestradiol benzoate. At the end of this period, the Spinnbarkeit of cervical mucus and the keratinization of the vaginal epithelium were less in the infertile ewes. It is suggested that the infertility in clover-affected ewes is due to an inability of target organs to give a continued response to the 'priming' action of oestrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号