首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several analogues of valine, leucine, and isoleucine carrying hydroxyl groups in the gamma- or delta-position have been tested in the aminoacylation of tRNA by valyl-tRNA synthetases from Saccharomyces cerevisiae and Escherichia coli. Results of the ATP/PPi exchange and of the aminoacylation reactions indicate that the amino acid analogues not only can form the aminoacyl adenylate intermediate but are also transferred to tRNA. However, the fact that the reaction consumes an excess of ATP indicates that the misactivated amino acid analogue is hydrolytically removed. Thus, valyl-tRNA synthetase from S. cerevisiae shows a high fidelity in forming valyl-tRNA. Although the much bulkier amino acid analogues allo- and iso-gamma-hydroxyvaline and allo- and iso-gamma-hydroxyisoleucine are initially charged to tRNA, the misaminoacylated tRNA(Val) is enzymatically deacylated. This cleavage reaction is mediated by the hydroxyl groups of the amino acid analogues which are converted into the corresponding lactones.  相似文献   

2.
Zhao MW  Hao R  Chen JF  Martin F  Eriani G  Wang ED 《Biochemistry》2003,42(25):7694-7700
Aquifex aeolicus alphabeta-LeuRS is the only known heterodimeric LeuRS, while Escherichia coli LeuRS is a canonical monomeric enzyme. By using the genes encoding A. aeolicus and E. coli LeuRS as PCR templates, the genes encoding the alpha and beta subunits from A. aeolicus alphabeta-LeuRS and the equivalent amino- and carboxy-terminal parts of E. coli LeuRS (identified as alpha' and beta') were amplified and recombined using suitable plasmids. These recombinant plasmids were transformed or cotransformed into E. coli to produce five monomeric and five heterodimeric LeuRS mutants. Seven of these were successfully overexpressed in vivo and purified, while three dimeric mutants with the beta' part of E. coli LeuRS were not successfully expressed. The seven purified mutants catalyzed amino acid activation, although several exhibited reduced aminoacylation properties. Removal of the last 36 residues of the alpha subunit of the A. aeolicus enzyme was determined to be deleterious for tRNA charging. Indeed, subunit exchange showed that the cross-species-specific recognition of A. aeolicus tRNA(Leu) occurs at the alpha subunit. None of the mixed E. coli-A. aeolicus enzymes were as thermostable as the native alphabeta-LeuRS. However, the fusion of the two alpha and beta peptides from A. aeolicus as a single chain analogous to canonical LeuRS resulted in a product more resistant to heat denaturation than the original enzyme.  相似文献   

3.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

4.
5.
The properties of native and of two modified tRNA Val species in the correction of misactivated threonine by valyl-tRNA synthetase have been studied. Whereas Thr-tRNA Val-C-C-A could not be isolated in the valyl-tRNA synthetase catalyzed reaction, Thr-tRNA Val-C-C-3'dA is isolable in up to 50% yield in this system and tRNA Val-C-C-3'NH2A is fully aminoacylated with threonine by the same enzyme. The hydrolysis of preformed Thr-tRNA Val-C-C-A by free valyl-tRNA synthetase is 30 times faster than the corresponding breakdown of Val-tRNA Val-C-C-A. This hydrolytic activity is also observed with Thr-tRNA Val-C-C-3'dA although the rate is reduce to that of the reaction of Val-tRNA Val-C-C-A. Modification of the threonine to O-methylthreonine, which is also a substrate for valyl-tRNA synthetase, leads to stabilization of the O-methylthreonyl-tRNA esters. The AMP/PP independent hydrolysis under aminoacylating conditions, which is a measure of the correction process, indicates that O-MeThr-tRNA Val-C-C-A is only very slowly corrected while the tRNA Val-C-C-3'dA and tRNA Val-C-C-3'NH2A esters are completely stable. Removal of the methoxy group of O-methylthreonine as in alpha-amino-butyric acid increases the rate of the hydrolytic reaction and once again alpha-Abu-tRNA Val-C-C-A and alpha-Abu-tRNA Val-C-C-3'dA are unstable under aminoacylating conditions and not isolable.  相似文献   

6.
The specificity of valyl-, phenylalanyl-, and tyrosyl-tRNA synthetases from yeast has been examined by a series of stringent tests designed to eliminate the possibility of artefactual interference. Valyl-tRNA synthetase, as well as activating a number of amino acid analogues, will accept alanine, cysteine, isoleucine, and serine in addition to threonine as substrates for both ATP-PPi exchange and transfer to some tRNAVal species. The transfer is not observed if atempts are made to isolate the appropriate aminoacyl-tRNAVal-C-C-A but its role in the overall aminoacylation can be suspected from both the formation of a stable aminoacyl-tRNAVal-C-C-A(3'NH2) compound and from the stoichiometry of ATP hydrolysis during the aminoacylation of the native tRNA. Similar tests with phenylalanyl-tRNA synthetase indicate that this enzyme will also activate and transfer other naturally occurring amino acids, namely, leucine, methionine, and tyrosine. The tyrosine enzyme, which lacks the hydrolytic capacity of the other two enzymes (von der Haar, F., & Cramer, F (1976) Biochemistry 15, 4131--4138) is probably absolutely specific for tyrosine. It is concluded that chemical proofreading, in terms of an enzymatic hydrolysis of a misacylated tRNA, plays an important part in maintaining the specificity in the overall reaction and that this activity may be more widespread than has so far been suspected.  相似文献   

7.
The nucleotide sequence of a leucine transfer RNA from E. coli   总被引:11,自引:0,他引:11  
  相似文献   

8.
9.
10.
11.
Two leucyl-tRNA synthetases (EC 6.1.1.4) have been purified to near homogeneity, the one from mitochondria and the other from cytoplasm of Tetrahymena pyriformis. Both enzymes were found to be structurally unrelated, single polypeptides with molecular weights of approximately 100,000 as determined by gel permeation, sucrose gradient centrifugation, and sodium dodecyl sulfate-polyacrylamide-gel electrophoresis. These enzymes behaved differently in elution profiles through hydroxyapatite- and diethylaminoethyl cellulose-column chromatography and isoelectric focusing. The two enzymes also showed some differences in responses to various salts for charging and in pH optima and temperature sensitivity, but no significant difference was found in their affinities (Km) for ATP and leucine. These enzymes recognized different leucyl-tRNA isoaccepting species as revealed by reversed-phase column chromatography. The mitochondrial enzyme can charge six isoaccepting leucyl-tRNA species, while the cytoplasmic enzyme can recognize only four species.  相似文献   

12.
Escherichia coli DNA polymerase I exists in at least two distinct kinetic forms. When it binds to a template, the proofreading activity is usually switched off. As the enzyme progresses along the template, it becomes more and more competent for excision. This phenomenon introduces a link between fidelity and processivity. Processivity is best studied when the chain-length distributions of synthesized polymers are stationary. Even then, however, one cannot avoid multiple initiations on a given template by the same molecule of the enzyme. When synthesis is initiated with primers of lengths 15 or 20, a strange phenomenon is observed. It seems that the polymerase starts by hydrolyzing the primer down to a length of 7-10 nucleotides and only then starts to add nucleotides. It does so in a low-accuracy mode, suggesting that, while the exonuclease is clearly active, it does not contribute to proofreading. The warm-up of the proofreading function is therefore reinterpreted as a switch between two modes of behaviour: a mode 1 of low accuracy in which the 3'----5' exonuclease, while active, is uncoupled from the polymerase and does not contribute to proofreading, and a mode 2 of high accuracy in which the exonuclease is kinetically linked to the polymerase activity.  相似文献   

13.
In previous work we identified several specific sites in Escherichia coli tRNAfMet that are essential for recognition of this tRNA by E. coli methionyl-tRNA synthetase (MetRS) (EC 6.1.1.10). Particularly strong evidence indicated a role for the nucleotide base at the wobble position of the anticodon in the discrimination process. We have now investigated the aminoacylation activity of a series of tRNAfMet derivatives containing single base changes in each position of the anticodon. In addition, derivatives containing permuted sequences and larger and smaller anticodon loops have been prepared. The variant tRNAs have been enzymatically synthesized in vitro by using T4 RNA ligase (EC 6.5.1.3). Base substitutions in the wobble position have been found to reduce aminoacylation rates by at least five orders of magnitude. Derivatives having base substitutions in the other two positions of the anticodon are aminoacylated 55-18,500 times slower than normal. Nucleotides that have specific functional groups in common with the normal anticodon bases are better tolerated at each of these positions than those that do not. A tRNAfMet variant having a six-membered loop containing only the CA sequence of the anticodon is aminoacylated still more slowly, and a derivative containing a five-membered loop is not measurably active. The normal loop size can be increased by one nucleotide with a relatively small effect on the rate of aminoacylation, which indicates that the spatial arrangement of the nucleotides is less critical than their chemical nature. We conclude from these data that recognition of tRNAfMet requires highly specific interactions of MetRS with functional groups on the nucleotide bases of the anticodon sequence. Several other aminoacyl-tRNA synthetases are known to require one or more anticodon bases for efficient aminoacylation of their tRNA substrates, and data from other laboratories suggest that anticodon sequences may be important for accurate discrimination between cognate and noncoagnate tRNAs by these enzymes.  相似文献   

14.
15.
Sixteen analogues of ATP have been tested in the aminoacylation reaction of threonyl-tRNA, lysyl-tRNA, and arginyl-tRNA synthetases from baker's yeast. Two compounds are substrates for threonyl-tRNA and for lysyl-tRNA synthetases and five compounds for arginyl-tRNA synthetase. There are six inhibitors for threonyl-tRNA, nine for lysyl-tRNA, and six for arginyl-tRNA synthetase. Their Km and Ki values have been determined. Thus positions 2, 6, 7, 8 and 9 of the purine moiety and 2' and 3' of the sugar moiety of the ATP molecule are important for catalytic action of these aminoacyl-tRNA synthetases. Remarkably arginyl-tRNA synthetase is the first aminoacyl-tRNA synthetase which tolerates bulky substituents at the sugar moiety of ATP. These data fit with the idea that synthetases of subunit structure need magnesium-ion-ATP complexes with an anti conformation as substrates whereas single-chain enzymes accept this substrate in the syn conformation.  相似文献   

16.
17.
本研究采用PCR技术从蜡样芽孢杆菌Bacillus cereus基因组DNA中克隆出亮氨酸脱氢酶基因,构建重组表达质粒p ET28α(+)-ldh,实现在大肠杆菌中的高效表达,并分析重组亮氨酸脱氢酶的酶学性质。结果表明,从Bacillus cereus成功克隆的亮氨酸脱氢酶编码基因约为1 000 bp,表达的重组亮氨酸脱氢酶相对分子质量约为40 k Da。酶学研究结果表明:该酶的最适反应温度为37℃,其热稳定性好,30℃的半衰期长达330 h;最适反应p H为9.5;在p H 7.0~8.0的缓冲液中保存24 h后仍保持原有酶活力的80%以上;金属离子Fe2+对该酶具有明显的促进作用,而EDTA强烈抑制亮氨酸脱氢酶的活性。动力学分析结果表明该酶对底物NADH催化的Km和Vmax分别为0.635 mmol/L和1.54μmol/(L·min)。亮氨酸脱氢酶基因在大肠杆菌中的成功表达为手性氨基酸的生物合成提供了可能。  相似文献   

18.
19.
20.
The amounts of the volatile acids produced from thereonine, valine, leucine and isoleucine by growing cultures of clostridia have been measured. The species used were Clostridium sporogenes; C. caloritolerans; C. botulinum proteolytic type A; C. botulinum proteolytic type B; C. botulinum proteolytic type F; C. botulinum proteolytic type G; C. putrificum; C. difficile; C. ghoni; C. bifermentans; C. sordellii; C. mangenoti; C. cadaveris; C. lituseburense; C. propionicum; C. sticklandii; C. scatologenes; C. subterminale; C. putrefaciens; C. histolyticum; C. tetanomorphum; C. limosum; C. lentoputrescens; C. tetani; C. melanomenatum; C. cochlearium; C. sporospheroides. Most of the species tested gave increased yields of propionic acid when grown in the threonine medium; in addition, some species resembled C. propionicum and produced n-butyric acid when grown in this medium. C. histolyticum produced only acetic acid in the basal medium; all seven strains of this species produced more acetic acid when grown in the threonine medium than in the basal medium. Species which oxidize valine to iso-butyric acid also oxidize leucine to 3-methyl butyric acid and isoleucine to 2-methylbutyric acid. The iso-caproic fraction produced by some species is shown to be derived from leucine. The identitity of the branched-chain acids produced by C. sporogenes has been confirmed by gas liquid chromatography/mass spectrometry.Abbreviations GLC gas liquid chromatography - RCM reinforced clostridial medium - VFA volatile fatty acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号