首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mismatch repair     
Specific repair systems are activated in response to the DNA damage. Mismatch repair protects the genome of prokaryotic and eukaryotic cells from lesions that appear during process of DNA replication or are induced by mutagenic factors. The methyl directed mismatch repair distinguishes the new strand from the old strand by the hemi-methylated state of the DNA and controls the fidelity of genetic information after homologous recombination. The very short patch repair restores the mismatches at the sites with nucleotide sequence CC(W/T)GG. The "8-oxoG" pathway is independent of the hemi-methylated state of the DNA, and removes the oxidated nucleotides from the genome of prokaryotes and eukaryotes. Mutations in genes of mismatch repair enhance the process of mutagenesis in prokaryotic cell, and are the reason for the development of the colon cancer in humans. The mechanisms of mismatch repair and the role of defective repair proteins in mutagenesis and carcinogenesis are discussed in this review.  相似文献   

2.
3.
Mismatch repair     
Specific repair systems are activated in response to DNA lesions. Mismatch repair protects the genome of prokaryotic and eukaryotic cells from errors arising during replication or induced by mutagenic factors. The mismatch repair system distinguishes between the newly synthesized and pattern DNA strands by the extent of methylation and checks the accuracy of genetic information after homologous recombination. Very short-patch repair corrects mismatches in CC(A/T)GG sites. The 8-oxoguanine system is independent of DNA hemimethylation and removes oxidized bases from prokaryotic and eukaryotic genomes. Mutations of repair genes increase mutagenesis in prokaryotic cells and cause colorectal cancer in humans. The review considers the repair mechanisms and the role of repair defects in mutagenesis and carcinogenesis.  相似文献   

4.
Comment on: Rodriguez GP, et al. Proc Natl Acad Sci USA 2012; 109:6153-8.  相似文献   

5.
6.
Due to major developments in genetics over the past decade, molecular biology tests are serving promising tools in early diagnosis and follow-up of cancer patients. Recent epidemiological studies revealed that the risk for each individual to develop cancer is closely linked to his/her own genetic potentialities. Some populations that are defective in DNA repair processes, for example in Xeroderma pigmentosum or in the Lynch syndrome, are particularly prone to cancer due to the accumulation of mutations within the genome. Such populations would benefit from the development of tests aimed at identifying people who are particularly at risk. Here, we review some data suggesting that the inactivation of mismatch repair is often found in endometrial cancer and we discuss molecular-based strategies that would help to identify the affected individuals in families with cases of glandular malignancies.  相似文献   

7.
Mismatch-repair systems have been identified in organisms ranging from Escherichia coli to humans. They can repair almost all DNA base pair mismatches as well as small insertion/deletion mismatches. Molecular and biochemical analyses have shown that the core components of eukaryotic mismatch-repair systems are highly homologous to their bacterial counterparts. In humans, defects in four mismatch-repair genes have been linked both to hereditary non-polyposis colorectal cancer and to spontaneous cancers that exhibit rearrangements in DNA containing simple repeat sequences.  相似文献   

8.
A vital process in maintaining a low genetic error rate is the removal of mismatched bases in DNA. The importance of this process in E. coli is demonstrated by the 100–1000 fold increase in mutation frequency observed in cells deficient in this repair system(1). Mismatches can arise as a consequence of recombination, errors in replication and as a result of spontaneous chemical deamination, the latter process resulting in an estimated twelve T:G mismatches per genome per day in mammalian cells(2). Recent studies, discussed here, provide evidence for the existence of specific mismatch repair systems in mammalian and human cells.  相似文献   

9.
Diversity of tRNA genes in eukaryotes   总被引:3,自引:0,他引:3  
We compare the diversity of chromosomal-encoded transfer RNA (tRNA) genes from 11 eukaryotes as identified by tRNAScan-SE of their respective genomes. They include the budding and fission yeast, worm, fruit fly, fugu, chicken, dog, rat, mouse, chimp and human. The number of tRNA genes are between 170 and 570 and the number of tRNA isoacceptors range from 41 to 55. Unexpectedly, the number of tRNA genes having the same anticodon but different sequences elsewhere in the tRNA body (defined here as tRNA isodecoder genes) varies significantly (10–246). tRNA isodecoder genes allow up to 274 different tRNA species to be produced from 446 genes in humans, but only up to 51 from 275 genes in the budding yeast. The fraction of tRNA isodecoder genes among all tRNA genes increases across the phylogenetic spectrum. A large number of sequence differences in human tRNA isodecoder genes occurs in the internal promoter regions for RNA polymerase III. We also describe a systematic, ligation-based method to detect and quantify tRNA isodecoder molecules in human samples, and show differential expression of three tRNA isodecoders in six human tissues. The large number of tRNA isodecoder genes in eukaryotes suggests that tRNA function may be more diverse than previously appreciated.  相似文献   

10.
Mismatch repair activity in mammalian mitochondria   总被引:9,自引:0,他引:9       下载免费PDF全文
Mitochondrial DNA (mtDNA) defects cause debilitating metabolic disorders for which there is no effective treatment. Patients suffering from these diseases often harbour both a wild-type and a mutated subpopulation of mtDNA, a situation termed heteroplasmy. Understanding mtDNA repair mechanisms could facilitate the development of novel therapies to combat these diseases. In particular, mismatch repair activity could potentially be used to repair pathogenic mtDNA mutations existing in the heteroplasmic state if heteroduplexes could be generated. To date, however, there has been no compelling evidence for such a repair activity in mammalian mitochondria. We now report evidence consistent with a mismatch repair capability in mammalian mitochondria that exhibits some characteristics of the nuclear pathway. A repair assay utilising a nicked heteroduplex substrate with a GT or a GG mismatch in the β-galactosidase reporter gene was used to test the repair potential of different lysates. A low level repair activity was identified in rat liver mitochondrial lysate that showed no strand bias. The activity was mismatch-selective, bi-directional, ATP-dependent and EDTA-sensitive. Western analysis using antibody to MSH2, a key nuclear mismatch repair system (MMR) protein, showed no cross-reacting species in mitochondrial lysate. A hypothesis to explain the molecular mechanism of mitochondrial MMR in the light of these observations is discussed.  相似文献   

11.
Mismatch repair and DNA damage signalling   总被引:2,自引:0,他引:2  
Stojic L  Brun R  Jiricny J 《DNA Repair》2004,3(8-9):1091-1101
Postreplicative mismatch repair (MMR) increases the fidelity of DNA replication by up to three orders of magnitude, through correcting DNA polymerase errors that escaped proofreading. MMR also controls homologous recombination (HR) by aborting strand exchange between divergent DNA sequences. In recent years, MMR has also been implicated in the response of mammalian cells to DNA damaging agents. Thus, MMR-deficient cells were shown to be around 100-fold more resistant to killing by methylating agents of the S(N)1type than cells with functional MMR. In the case of cisplatin, the sensitivity difference was lower, typically two- to three-fold, but was observed in all matched MMR-proficient and -deficient cell pairs. More controversial is the role of MMR in cellular response to other DNA damaging agents, such as ionizing radiation (IR), topoisomerase poisons, antimetabolites, UV radiation and DNA intercalators. The MMR-dependent DNA damage signalling pathways activated by the above agents are also ill-defined. To date, signalling cascades involving the Ataxia telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), as well as the stress-activated kinases JNK/SAPK and p38alpha have been linked with methylating agent and 6-thioguanine (TG) treatments, while cisplatin damage was reported to activate the c-Abl and JNK/SAPK kinases in MMR-dependent manner. MMR defects are found in several different cancer types, both familiar and sporadic, and it is possible that the involvement of the MMR system in DNA damage signalling play an important role in transformation. The scope of this article is to provide a brief overview of the recent literature on this subject and to raise questions that could be addressed in future studies.  相似文献   

12.
13.
14.
15.
The co-recessive inheritance hypothesis proposes that certain recessively inherited diseases require homozygosity and/or hemizygosity for defective alleles at more than one locus simultaneously for the trait to be expressed. Although this hypothesis was originally proposed in the context of defective alleles for genes coding for DNA-repair functions, it need not be limited to this context, and genetic selection pressure may favor this model for genes involved in surveillance of any type. The co-recessive inheritance hypothesis also predicts extremely high carrier frequencies, likely affecting much of the general population, for defective alleles associated with these rare recessive diseases. The model predicts much lower rates of consanguinity between the parents of affected individuals than autosomal recessive inheritance, allowing it to be tested epidemiologically, and recent data suggest that the hypothesis may be valid for some cases of ataxia telangiectasia and xeroderma pigmentosum. The model provides possible explanations for a number of otherwise puzzling findings in several diseases associated with defective DNA repair.  相似文献   

16.
Lisby M  Rothstein R 《Biochimie》2005,87(7):579-589
In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets of proteins, which are reorganized into a focal assembly at the lesion. Moreover, the composition of these foci is coordinated with cell cycle progression, reflecting the favoring of end-joining in the G1 phase and homologous recombination in S and G2. The assembly of proteins at sites of DNA damage is largely controlled by a network of protein-protein interactions, with the Mre11 complex initiating assembly at DNA ends and replication protein A directing recruitment to single-stranded DNA. This review summarizes current knowledge on the cellular organization of DSB repair and checkpoint proteins focusing on budding yeast and mammalian cells.  相似文献   

17.
18.
19.
Mismatch repair proteins and mitotic genome stability   总被引:4,自引:0,他引:4  
Mismatch repair (MMR) proteins play a critical role in maintaining the mitotic stability of eukaryotic genomes. MMR proteins repair errors made during DNA replication and in their absence, mutations accumulate at elevated rates. In addition, MMR proteins inhibit recombination between non-identical DNA sequences, and hence prevent genome rearrangements resulting from interactions between repetitive elements. This review provides an overview of the anti-mutator and anti-recombination functions of MMR proteins in the yeast Saccharomyces cerevisiae.  相似文献   

20.
Jiricny J 《Current biology : CB》2000,10(21):R788-R790
High-resolution crystal structures have recently been solved for the mismatch binding protein MutS of Escherichia coli and its Thermus aquaticus homologue; they show how these factors recognise such structurally diverse substrates as base-base mismatches and insertion/deletion loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号