首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the use of tetrapeptide and other proprietary caspase inhibitors in the study of neurodegeneration, we had concluded that mechanisms other than the inhibition of caspases contributed to the protective effects of certain caspase inhibitors. Here we report our studies to identify a target for and hence a mechanism by which the tetrapeptide inhibitor tyrosine-valine-alanine-aspartate-chloromethyl ketone (Ac-YVAD-cmk) is able to rescue neuronal cell cultures from cell death. Ac-YVAD-cmk rescued neuronal cells from cell death in response to oxidative stress and oxygen/glucose deprivation. Affinity labeling with biotinylated YVAD-cmk demonstrated distinct binding proteins for the inhibitor in cells from the central nervous system versus Jurkat cells. Binding to the novel target protein was displaced by class-specific protease inhibitors and suggested that the target is a cysteine protease. Affinity purification and sequencing identified the target as cathepsin-B. Cathepsin-B inhibitors competed with biotinylated YVAD-cmk for the target protein. The availability of the target for binding was reduced in cells that had been rescued by unlabeled inhibitor. Cathepsin-B inhibitors rescue hippocampal slices from cell death induced by oxygen/glucose deprivation. These data provide evidence to support a role for cathepsin-B in neuronal cell death, particularly that following ischemia.  相似文献   

2.
Abstract: The neurotoxin 6-hydroxydopamine (6-OHDA) induces apoptosis in the rat phaeochromocytoma cell line PC12. 6-OHDA-induced apoptosis is morphologically indistinguishable from serum deprivation-induced apoptosis. Exposure of PC12 cells to a low concentration of 6-OHDA (25 µ M ) results in apoptosis, whereas an increased concentration (50 µ M ) results in a mixture of apoptosis and necrosis. We investigated the involvement of caspases in the apoptotic death of PC12 cells induced by 6-OHDA, using a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), and compared this with serum deprivation-induced apoptosis, which is known to involve caspases. We show that zVAD-fmk (100 µ M ) completely prevented the apoptotic morphology of chromatin condensation induced by exposure to either 6-OHDA (25 and 50 µ M ) or serum deprivation. Furthermore, cell lysates from 6-OHDA-treated cultures showed cleavage of a fluorogenic substrate for caspase-3-like proteases (caspase-2, 3, and 7), acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin, and this was inhibited by zVAD-fmk. However, although zVAD-fmk restored total cell viability to serum-deprived cells or cells exposed to 25 µ M 6-OHDA, the inhibitor did not restore viability to cells exposed to 50 µ M 6-OHDA. These data show the involvement of a caspase-3-like protease in 6-OHDA-induced apoptosis and that caspase inhibition is sufficient to rescue PC12 cells from the apoptotic but not the necrotic component of 6-OHDA neurotoxicity.  相似文献   

3.
Astragalosides (AST) are reported to be neuroprotective in focal cerebral ischemic models in vivo. In this study, the direct effect of AST against oxygen and glucose deprivation (OGD) including neuronal injury and the underlying mechanisms in vitro were investigated. 5 h OGD followed by 24 h of reperfusion [adding back oxygen and glucose (OGD-R)] was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. AST (1, 100, and 200 µg/mL) were added to the culture after 5 h of the OGD ischemic insult and was present during the reoxygenation phases. A key finding was that OGD-R decreased cell viability, increased lactate dehydrogenase, increased reactive oxygen species, apoptosis, autophagy, functional impairment of mitochondria, and endoplasmic reticulum stress in PC12 cells, all of which AST treatment significantly reduced. In addition, AST attenuated OGD-R-induced cell loss through P38 MAPK activation a neuroprotective effect blunted by SB203580, a specific inhibitor of P38 MAPK. Our data suggest that both apoptosis and autophagy are important characteristics of OGD-R-induced PC12 death and that treating PC12 cells with AST blocked OGD-R-induced apoptosis and autophagy by suppressing intracellular oxidative stress, functional impairment of mitochondria, and endoplasmic reticulum stress. Our data provide identification of AST that can concomitantly inhibit multiple cells death pathways following OGD injuries in neural cells.  相似文献   

4.
Chemotherapeutic drug-induced apoptosis of human malignant glioma cells involves the death receptor-independent activation of caspases other than caspases 3 or 8 (Glaser et al., Oncogene 18, 5044-5053, 1999). Here, we report that caspases 1, 2, 3, 7, 8, and 9 are constitutively expressed in most human malignant glioma cell lines. Cytotoxic drug-induced apoptosisinvolves delayed activation of caspases 2, 7, and 9, but not 8 and 3, and is blocked by a broad spectrum caspase inhibitor, zVAD-fmk. Cytochrome c release from mitochondria precedes caspase activation during drug-induced apoptosis and is unaffected by zVAD-fmk or ectopic expression of the viral caspase inhibitor, crm-A. In contrast, ectopic expression of BCL-X(L) prevents drug-induced cytochrome c release, caspase activation and cell death. Thus, cancer chemotherapy targets the mitochondrial, caspase-dependent death pathway in human malignant glioma cells.  相似文献   

5.
Despite the identification of several mutations in familial Parkinson's disease (PD), the underlying mechanisms of dopaminergic neuronal loss in idiopathic PD are still unknown. To study whether caspase-dependent apoptosis may play a role in the pathogenesis of PD, we examined 6-hydroxydopamine (6-OHDA) toxicity in dopaminergic SH-SY5Y cells and in embryonic dopaminergic mesencephalic cultures. 6-OHDA induced activation of caspases 3, 6 and 9, chromatin condensation and cell death in SH-SY5Y cells. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethylketone (zVAD-fmk) or adenovirally mediated ectopic expression of the X-chromosomal inhibitor of apoptosis protein (XIAP) blocked caspase activation and prevented death of SH-SY5Y cells. Similarly, zVAD-fmk provided protection from 6-OHDA-induced loss of tyrosine hydroxylase-positive neurones in mesencephalic cultures. In contrast, zVAD-fmk failed to protect mesencephalic dopaminergic neurones from 6-OHDA-induced loss of neurites and reduction of [(3)H]dopamine uptake. These data suggest that, although caspase inhibition provides protection from 6-OHDA-induced death of dopaminergic neurones, the neurones may remain functionally impaired.  相似文献   

6.
To study the effect of extracellular acidosis on apoptosis and necrosis during ischemia and reoxygenation, we exposed human post-mitotic NT2-N neurones to oxygen and glucose deprivation (OGD) followed by reoxygenation. In some experiments, pH of the cell medium was lowered to 5.9 during either OGD or reoxygenation or both. Staurosporine, used as a positive control for apoptosis, caused Poly(ADP-ribose)-polymerase (PARP) cleavage and nuclear fragmentation, but no PARP cleavage and little fragmentation were seen after OGD. Low molecular weight DNA fragments were found after staurosporine treatment, but not after OGD. No protective effect of caspase inhibitors was seen after 3 h of OGD and 21 h of reoxygenation, but after 45 h of reoxygenation caspase inhibition induced a modest improvement in 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) cleavage. While acidosis during OGD accompanied by neutral medium during reoxygenation protected the neurones (MTT: 228 +/- 117% of neutral medium, p < 0.001), acidosis during reoxygenation only was detrimental (MTT: 38 +/- 25%, p < 0.01). We conclude that apoptotic mechanisms play a minor role after OGD in NT2-N neurones. The effect of acidosis on neuronal survival depends on the timing of acidosis, as acidosis was protective during OGD and detrimental during reoxygenation.  相似文献   

7.
8.
The ability of proteins of the Bcl-2 family to either induce or inhibit apoptosis is dependent on both cell type and the apoptotic stimulus. We have shown in the murine pro-B cell line FL5.12 that Bcl-2 is incapable of inhibiting tumor necrosis factor alpha (TNFalpha)-induced cell death and is cleaved during this process. One potential explanation for this observation is that caspase activation directly or indirectly inhibits Bcl-2 function. It has been suggested that caspase cleavage of Bcl-2 is responsible for its inability to block certain cell deaths. Consistent with Bcl-2 cleavage being a caspase-mediated event, this cleavage is inhibitable by 50 microM CBZ-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Furthermore, Bcl-2 can cooperate with the caspase inhibitor zVAD-fmk in a dose-dependent manner to block TNFalpha-induced cell death. Overexpression of Bcl-2 results in a 10-fold decrease in the amount of zVAD-fmk required to inhibit TNFalpha-induced apoptosis. However, cleavage-defective mutants (D31A and D34A) show no enhanced viability relative to wild-type Bcl-2 in response to TNFalpha-induced cell death and also show the same cooperativity with zVAD-fmk. These results suggest that Bcl-2 cleavage is not important for the inhibition of TNFalpha-induced cell death but do not preclude an involvement in a post-commitment phase of apoptosis.  相似文献   

9.
TNF is unusual among the death receptor ligands in being able to induce either apoptotic or necrotic cell death. We have observed that in WEHI 164 fibrosarcoma, cells the mode of TNF-induced cell death is dependent on the stage of the cell cycle. Cells arrested in G(0)/G(1) undergo necrosis, while those progressing through the cell cycle undergo apoptosis. TNF induces caspase activity in both settings, and the broad spectrum caspase inhibitor zVAD-fmk inhibits this activity and blocks both TNF-induced apoptosis and necrosis. Inhibition of oxygen radical accumulation does not block cytotoxicity. The presence and activation of specific caspases were examined by Western blotting. The procaspase-8a isoform was down-regulated in proliferating cells. Procaspases-8b and -7 were cleaved during TNF-induced apoptosis but not necrosis. Thus, a different pattern of caspase expression and activation occurs dependent on the cell cycle and which may determine the mode of cell death.  相似文献   

10.
We previously demonstrated that the broad-spectrum caspase inhibitor, zVAD-fmk, totally deviated apoptosis to necrosis in B lymphocytes. We report here that, in contrast with zVAD-fmk, IL-4 protected B cells from spontaneous and from dexamethasone-induced apoptosis and actually maintained cell viability. This was assessed by morphological and biochemical criteria and accompanied by the maintenance of mitochondrial transmembrane potential (DeltaPsiCm) and elevated glutathione (GSH) levels. Under these conditions, zVAD-fmk also totally inhibited apoptosis in thymocytes, but it partly preserved cell viability with a parallel increase in the percentage of cells exhibiting high DeltaPsiCm and elevated GSH levels. Nevertheless, non-rescued cells were deviated to necrosis. Therefore, the pathway leading to either apoptosis or necrosis appears to involve common mitochondrial dysfunctions which could not be reversed by caspase inhibition, suggesting that the pharmacological inhibition of cell death should occur at an earlier stage.  相似文献   

11.
Stroke is known to induce massive cell death in the ischemic brain. Either necrotic or apoptotic types of cell death program were observed in neurons in zone of ischemia. We suggest that spatial heterogeneity of glucose and oxygen distribution plays a crucial role in this phenomenon. In order to elucidate the role of glucose and oxygen in ischemic neurons choice of cell death pathway, conditions corresponding to different areas of insult were reproduced in vitro in the model of surviving brain cortex tissue slices. Three zones were modeled in vitro by varying glucose and oxygen concentration in surviving slices incubation media. Modeled ischemic area I (MIA I) was corresponded to the center of suggested ischemic zone where the levels of glucose and oxygen were considered to be extremely low. MIA II was assigned as intermediate area where oxygen concentration was still very low but glucose was present (this area was also divided into two sub-areas MIA IIa and MIA IIb with physiologically low (5 mM) and normal (10 mM) level of glucose respectively). MIA III was considered as a periphery area where glucose concentration was close to physiological level and high level of ROS production had been induced by reoxygenation after anoxia. Analysis of molecular mechanisms of cell death in MIA I, IIa, IIb and III was carried out. Cell death in MIA I was found to proceed by necrotic manner. Apoptosis characterized by cyt c release, caspase 3 activation and internucleosomal DNA fragmentation was observed in MIA III. Cell death in MIA II was accompanied by several (not all) hallmarks of apoptosis. Mechanisms of cell death in MIA IIa and MIA IIb were found to be different. Internucleosomal DNA fragmentation in MIA IIa but not in MIA IIb was sensitive to glycine (5 mM), inhibitor of NMDA receptor MK-801 (10 μM) and PTP inhibitor cyclosporine A (10 μM). Activation of caspase 3 was detected in MIA IIb but not in MIA IIa. However cytochrome c release was observed neither in MIA IIa nor in MIA IIb. In MIAs II–III apoptosis was accompanied by uncoupling of oxidative phosphorylation, which was induced by rise of intracellular Ca2+ and intensive ROS production. Results obtained in present study allow us to propose existence of at least four molecular pathways of cell death development in brain ischemic zone. The choice of cell death pathway is determined by oxygen and glucose concentration in the particular area of the ischemic zone.  相似文献   

12.
Neuronal cells injured by ischemia and reperfusion to a certain extent are committed to death in necrotic or apoptotic form. Necrosis is induced by gross ATP depletion or 'energy crisis' of the cell, whereas apoptosis is induced by a mechanism still to be defined in detail. Here, we investigated this mechanism by focusing on a DNA damage-sensor, poly(ADP-ribose) polymerase-1 (PARP-1). A 2-h oxygen and glucose deprivation (OGD) followed by reoxygenation (Reox) induced apoptosis, rather than necrosis, in rat cortical neurons. During the Reox, PARP-1 was much activated and autopoly(ADP-ribosyl)ated, consuming the substrate, NAD+. Induction of apoptosis by OGD/Reox was suppressed by overexpression of Bcl-2, indicating mitochondrial impairment in this induction process. Mitochondrial permeability transition (MPT), or membrane depolarization, and a release of proapoptotic proteins, i.e. cytochrome c, apoptosis-inducing factor and endonuclease G, from mitochondria were observed during the Reox. These apoptotic changes of mitochondria and the nucleus were attenuated by PARP-1 inhibitors, 1,5-dihydroxyisoquinoline and benzamide, and also by small interfering RNA specific for PARP-1. These results indicated that PARP-1 plays a principal role in inducing mitochondrial impairment that ultimately leads to apoptosis of neurons after cerebral ischemia.  相似文献   

13.
Alkylphosphocholines (APC) are candidate anticancer agents. We here report that APC induce the formation of large vacuoles and typical features of apoptosis in human glioma cell lines, but not in immortalized astrocytes. APC promote caspase activation, poly(ADP-ribose)-polymerase (PARP) processing and cytochrome c release from mitochondria. Adenoviral X-linked inhibitor of apoptosis (XIAP) gene transfer, or exposure to the caspase inhibitor, benzyloxycarbonyl-Val-Ala-DL-Asp-fluoro-methylketone zVAD-fmk, blocks caspase-7 and PARP processing, but not cell death, whereas BCL-X(L) blocks not only caspase-7 and PARP processing but also cell death. APC induce changes in Delta Psi m in sensitive glioma cells, but not in resistant astrocytes. The changes in Delta Psi m are unaffected by crm-A (cowpox serpin-cytokine response modifier protein A), XIAP or zVAD-fmk, but blocked by BCL-X(L), and are thus a strong predictor of cell death in response to APC. Free radicals are induced, but not responsible for cell death. APC thus induce a characteristic morphological, BCL-X(L)-sensitive, apparently caspase-independent cell death involving mitochondrial alterations selectively in neoplastic astrocytic cells.  相似文献   

14.
Hydroxysafflor yellow A (HSYA) was reported neuroprotective under several ischemic models in vivo. In this study, the direct effect of HSYA against oxygen–glucose deprivation (OGD) inducing acute neuronal injury and the underling mechanisms in vitro were investigated. Four-hour oxygen and glucose deprivation (OGD) followed by 20 h reperfusion (adding back oxygen and glucose, OGD-R) was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. HSYA (1, 10, and 100 μmol/l) was added to the cultures 30 min prior to the ischemic insult and was present during OGD and reoxygenation phases. The survival rate of PC12 cells was detected by MTT assay. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were elevated by biochemical method. Hoechst 33258 staining and flow cytometric analysis were used to detect apoptosis; western blotting was used to detect the expression of Bcl-2, Bax, and Cytochrome C protein. The activity of caspase-3 was assessed by colorimetry. HSYA concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-R. Moreover, the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol and the consequent activation of caspase-3 were reversed by HSYA in a dose-dependent manner. These results suggest that apoptosis is an important characteristic of OGD-R-induced PC 12 death and that treatment of PC12 cells with HSYA can block OGD-R-induced apoptosis through suppression of intracellular oxidative stress and mitochondria dependent caspase cascade.  相似文献   

15.
Caspases are considered to be the key effector proteases of apoptosis. Initiator caspases cleave and activate downstream executioner caspases, which are responsible for the degradation of numerous cellular substrates. We studied the role of caspases in apoptotic cell death of a human melanoma cell line. Surprisingly, the pancaspase inhibitor zVAD-fmk was unable to block cleavage of poly(ADP-ribose) polymerase (PARP) after treatment with etoposide, while it did prevent DEVDase activity. It is highly unlikely that caspase-2, which is a relatively zVAD-fmk-resistant caspase, is mediating etoposide-induced PARP cleavage, as a preferred inhibitor of this caspase could not prevent cleavage. In contrast, caspase activation and PARP degradation were blocked by pretreatment of the cells with the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). We therefore conclude that a serine protease regulates an alternative initiation mechanism that leads to caspase activation and PARP cleavage. More importantly, while zVAD-fmk could not rescue melanoma cells from etoposide-induced death, the combination with AEBSF resulted in substantial protection. This indicates that this novel pathway fulfills a critical role in the execution of etoposide-induced programmed cell death.  相似文献   

16.
Cytochrome c is thought to play an important role in the initiation of apoptosis following its release from mitochondria. It is controversial whether such release is also involved in caspase activation and apoptotic cell death after ligation of the cell surface molecule Fas. We addressed this issue by investigating cells from the human cell lines Jurkat and SKW6 which had been treated with the inhibitor of the mitochondrial F0/F1-ATPase, oligomycin. Oligomycin-treatment led, over a wide range of concentrations, to ATP-depletion and, at similar concentrations, abrogated the appearance of caspase-3-like activity caused by stauroporine. Electroporation of cytochrome c protein into intact cells induced caspase activation in both cell lines and significant nuclear apoptosis in Jurkat cells. In ATP-depleted cells, electroporation of cytochrome c induced neither caspase activation nor nuclear fragmentation. Fas-induced caspase activation and nuclear apoptosis, however, were unaffected by the depletion of ATP. Thus, cytochrome c is unlikely to be an important factor in Fas-induced cell death.  相似文献   

17.
Renal ischemia–reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia–reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia–reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.  相似文献   

18.
Asiatic acid (AA), a triterpene, is known to be cytotoxic to several tumor cell lines. AA induces dose- and time-dependent cell death in U-87 MG human glioblastoma. This cell death occurs via both apoptosis and necrosis. The effect of AA may be cell type-specific as AA-induced cell death was mainly apoptotic in colon cancer RKO cells. AA-induced glioblastoma cell death is associated with decreased mitochondrial membrane potential, activation of caspase-9 and -3, and increased intracellular free Ca2+. Although treatment of glioblastoma cells with the caspase inhibitor zVAD-fmk completely abolished AA-induced caspase activation, it did not significantly block AA-induced cell death. AA-induced cell death was significantly prevented by an intracellular Ca2+ inhibitor, BAPTA/AM. Taken together, these results indicate that AA induces cell death by both apoptosis and necrosis, with Ca2+-mediated necrotic cell death predominating.  相似文献   

19.
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.  相似文献   

20.
Benzodiazepines protect hippocampal neurons when administered within the first few hours after transient cerebral ischemia. Here, we examined the ability of diazepam to prevent early signals of cell injury (before cell death) after in vitro ischemia. Ischemia in vitro or in vivo causes a rapid depletion of ATP and the generation of cell death signals, such as the release of cytochrome c from mitochondria. Hippocampal slices from adult rats were subjected to 7 min of oxygen-glucose deprivation (OGD) and assessed histologically 3 h after reoxygenation. At this time, area CA1 neurons appeared viable, although slight abnormalities in structure were evident. Immediately following OGD, ATP levels in hippocampus were decreased by 70%, and they recovered partially over the next 3 h of reoxygenation. When diazepam was included in the reoxygenation buffer, ATP levels recovered completely by 3 h after OGD. The effects of diazepam were blocked by picrotoxin, indicating that the protection was mediated by an influx of Cl(-) through the GABA(A) receptor. It is interesting that the benzodiazepine antagonist flumazenil did not prevent the action of diazepam, as has been shown in other studies using the hippocampus. Two hours after OGD, the partial recovery of ATP levels occurred simultaneously with an increase of cytochrome c (approximately 400%) in the cytosol. When diazepam was included in the reoxygenation buffer, it completely prevented the increase in cytosolic cytochrome c. Thus, complete recovery of ATP and prevention of cytochrome c release from mitochondria can be achieved when diazepam is given after the loss of ATP induced by OGD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号