首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.  相似文献   

2.
G protein-coupled receptors are known to form homo-and heteromers at the plasma membrane, but the molecular properties of these oligomers are relatively unknown. Here, we show a method that allows the diffusion of G protein-coupled receptors oligomers in the plasma membrane to be monitored in single cells by combining Bimolecular Fluorescence Complementation and Fluorescence Correlation Spectroscopy. With this approach we have measured, for the first time, the membrane diffusional characteristics of adenosine A(1) and A(2A) receptor homo-and heterodimers in Chinese Hamster Ovary cells. Interestingly, both homodimers display similar diffusion co-efficients (D) when expressed in living cells (D=5.0 and 4.8x10(-9) cm(2)/s, respectively) but the heterodimer formed by these receptors exhibit a significantly faster plasma membrane diffusion co-efficent (D=5.6x10(-9) cm(2)/s) when compared to the adenosine A(1) receptor tagged with the full-length yellow fluorescent protein (D=4.0x10(-9) cm(2)/s). Overall, these results demonstrate differences in plasma membrane diffusion between adenosine receptor homo-and heterodimers, providing new insights into the molecular plasticity of G protein-coupled receptor oligomerization.  相似文献   

3.
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary disorders of the retina caused by mutation in genes of the photoreceptor proteins with an autosomal dominant (adRP), autosomal recessive (arRP), or X-linked pattern of inheritance. Although there are over 100 identified mutations in the opsin gene associated with RP, only a few of them are inherited with the arRP pattern. E150K is the first reported missense mutation associated with arRP. This opsin mutation is located in the second cytoplasmic loop of this G protein-coupled receptor. E150K opsin expressed in HEK293 cells and reconstituted with 11-cis-retinal displayed an absorption spectrum similar to the wild type (WT) counterpart and activated G protein transducin slightly faster than WT receptor. However, the majority of E150K opsin showed a higher apparent molecular mass in SDS-PAGE and was resistant to endoglycosidase H deglycosidase. Instead of being transported to the plasma membrane, E150K opsin is partially colocalized with the cis/medial Golgi compartment markers such as GM130 and Vti1b but not with the trans-Golgi network. In contrast to the endoplasmic reticulum-retained adRP mutant, P23H opsin, Golgi-retained E150K opsin did not influence the proper transport of the WT opsin when coexpressed in HEK293 cells. This result is consistent with the recessive pattern of inheritance of this mutation. Thus, our study reveals a novel molecular mechanism for retinal degeneration that results from deficient export of opsin from the Golgi apparatus.  相似文献   

4.
The G protein-coupled receptor kinases (GRKs) are important enzymes in the desensitization of activated G protein-coupled receptors (GPCR). Seven members of the GRK family have been identified to date. Among these enzymes, GRK1 is involved in phototransduction and is the most specialized kinase of the family. GRK1 phosphorylates photoactivated rhodopsin (Rho*), initiating steps in its deactivation. In this study, we found that chicken retina and pineal gland express a novel form of GRK that has sequence features characteristic of GRK1. However, unlike bovine GRK1 which is farnesylated, chicken GRK1 contains a consensus sequence for geranylgeranylation. Peptides corresponding to the C-terminal sequence of chicken GRK1 are geranylgeranylated by a cytosolic extract of chicken liver. Based on results of molecular cloning and immunolocalization, it appears that both rod and cone photoreceptors express this novel GRK1. These data indicate a larger sequence diversity of photoreceptor GRKs than anticipated previously.  相似文献   

5.
Ribose ring-constrained nucleosides and nucleotides to act at cell-surface purine recesptors have been designed and synthesized. At the P2Y1 nucleotide receptor and the A3 adenosine receptor (AR) the North envelope conformation of ribose is highly preferred. We have applied mutagenesis and rhodopsin-based homology modeling to the study of purine receptors and used the structural insights gained to assist in the design of novel ligands. Two subgroups of P2Y receptors have been defined, containing different sets of cationic residues for coordinating the phosphate groups. Modeling/mutagenesis of adenosine receptors has focused on determinants of intrinsic efficacy in adenosine derivatives and on a conserved Trp residue (6.48) which is involved in the activation process. The clinical use of adenosine agonists as cytoprotective agents has been limited by the widespread occurrence of ARs, thus, leading to undesirable side effects of exogenously administered adenosine derivatives. In order to overcome the inherent nonselectivity of activating the native receptors, we have introduced the concept of neoceptors. By this strategy, intended for eventual use in gene therapy, the putative ligand binding site of a G protein-coupled receptor is reengineered for activation by synthetic agonists (neoligands) built to have a structural complementarity. Using a rational design process we have identified neoceptor-neoligand pairs which are pharmacologically orthogonal with respect to the native species.  相似文献   

6.
Ligands for G protein-coupled receptors (GPCR) are capable of activating mitogenic receptor tyrosine kinases, in addition to the mitogen-activated protein (MAP) kinase signaling pathway and classic G protein-dependent signaling pathways involving adenylyl cyclase and phospholipase. For example, receptors for epidermal growth factor (EGF), insulin-like growth-1 and platelet-derived growth factor and can be transactivated through G protein-coupled receptors. Neurotrophins, such as NGF, BDNF and NT-3 also utilize receptor tyrosine kinases, namely TrkA, TrkB and TrkC. Recently, it has been shown that activation of Trk receptor tyrosine kinases can also occur via a G protein-coupled receptor mechanism, without involvement of neurotrophins. Adenosine and adenosine agonists can activate Trk receptor phosphorylation specifically through the seven transmembrane spanning adenosine 2A (A2A) receptor. Several features of Trk receptor transactivation are noteworthy and differ significantly from other transactivation events. Trk receptor transactivation is slower and results in a selective increase in activated Akt. Unlike the biological actions of other tyrosine kinase receptors, increased Trk receptor activity by adenosine resulted in increased cell survival. This article will discuss potential mechanisms by which adenosine can activate trophic responses through Trk tyrosine kinase receptors.  相似文献   

7.
Despite some caveats, G protein-coupled receptor oligomerization is a phenomenon that is becoming largely accepted. Within these oligomers, however, stoichiometry remains to be elucidated. Here, by using bimolecular fluorescence complementation, we visualized adenosine A(2A) receptor homodimers in living cells, showing no apparent difference in the subcellular distribution when compared to the YFP-labelled adenosine A(2A) receptor protomer. Interestingly, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques allowed us to detect the occurrence of adenosine A(2A) receptors oligomers containing more than two protomers. These results provide new insights into the molecular composition of G protein-coupled receptor oligomers. STRUCTURED SUMMARY:  相似文献   

8.
Ribose ring-constrained nucleosides and nucleotides to act at cell-surface purine recesptors have been designed and synthesized. At the P2Y1 nucleotide receptor and the A3 adenosine receptor (AR) the North envelope conformation of ribose is highly preferred. We have applied mutagenesis and rhodopsin-based homology modeling to the study of purine receptors and used the structural insights gained to assist in the design of novel ligands. Two subgroups of P2Y receptors have been defined, containing different sets of cationic residues for coordinating the phosphate groups. Modeling/mutagenesis of adenosine receptors has focused on determinants of intrinsic efficacy in adenosine derivatives and on a conserved Trp residue (6.48) which is involved in the activation process. The clinical use of adenosine agonists as cytoprotective agents has been limited by the widespread occurrence of ARs, thus, leading to undesirable side effects of exogenously administered adenosine derivatives. In order to overcome the inherent nonselectivity of activating the native receptors, we have introduced the concept of neoceptors. By this strategy, intended for eventual use in gene therapy, the putative ligand binding site of a G protein-coupled receptor is reengineered for activation by synthetic agonists (neoligands) built to have a structural complementarity. Using a rational design process we have identified neoceptor-neoligand pairs which are pharmacologically orthogonal with respect to the native species.  相似文献   

9.
A novel receptor cDNA was isolated from a human hippocampal cDNA library. The encoded polypeptide contains structural features consistent with its classification as a G protein-coupled receptor and shares 45% homology with the human A1 and A2a adenosine receptors. Chinese hamster ovary K1 cells expressing this receptor showed marked stimulation of adenylate cyclase when treated with 1mM adenosine. There was no response to ligands selective for A1 and A2a receptors but the general adenosine agonist N-ethylcarboxyamidoadenosine (NECA) caused a 10 fold increase in cyclic AMP accumulation with an EC50 of approximately 0.9 microM. This effect was inhibited by the adenosine receptor antagonist theophylline. Specific binding of A1 and A2a selective agonists and NECA was not detected. It is proposed that the novel receptor is a human brain adenosine A2b receptor subtype.  相似文献   

10.
Extensive sequence data and structural sampling of expressed proteins from different species lead to the idea that entire molecules or specific domain folds belong to large superfamilies of proteins. A subset of G protein-coupled receptors, one of the largest families involved in cellular signaling, rod and cone opsins are involved in phototransduction in photoreceptor cells. Here, the evolutionary analysis of opsin sequences and structures predicts key residues involved in the transmission of the signal from the binding site of the chromophore to the cytoplasmic surface and residues that are involved in the spectral tuning of opsins to short wavelengths of light.  相似文献   

11.
The neuromodulator adenosine mediates dark-adaptive changes in retinal photoreceptors through A(2a) receptors. In cold-blooded vertebrates, opsin mRNA expression is lower at night than during the day. In the present study, we tested whether adenosine could inhibit opsin mRNA expression in cultured rod cells and if endogenous adenosine acts to suppress opsin mRNA in the intact retina at night. Semi-quantitative in situ hybridization showed that treatment with 100 nm of the A(2a)/A(2b) agonist N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) reduced opsin mRNA 41% in cultured rod cells. The effect of DPMA was blocked by 10 microm of the A(2a) antagonist 8-(3-chlorostyryl)caffeine (CSC) but not by 10 microm of the A(2b) antagonist alloxazine. One micromolar adenosine alone had no effect on opsin mRNA. However, in the presence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA), 1 microm adenosine reduced opsin mRNA 61%. EHNA alone reduced opsin mRNA by 26%. Consistent with an A(2a) receptor mechanism, 100 nm forskolin (adenylate cyclase agonist) decreased opsin mRNA 34%. Finally, northern blots showed that intravitreal injection of 10 microm CSC at night increased opsin I mRNA 38%. Thus, endogenous adenosine suppresses rod opsin I mRNA expression at night; in vitro results indicate this reduction occurs through A(2a)-like receptor binding and stimulation of adenylate cyclase activity.  相似文献   

12.
G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.  相似文献   

13.
E N Pugh 《Neuron》2001,32(3):375-376
More than 100 photopigment G protein-coupled receptors (opsins) have been sequenced and organized into six classes. Rod photoreceptors in various species have been found to express an opsin from one of the two rhodopsin classes, while cones express an opsin from one of the four remaining classes. It has now been discovered that salamander short-wavelength sensitive cones and green rods express the same opsin, while manifesting other features that classically distinguish rods from cones.  相似文献   

14.
G(i) protein-coupled receptors such as the M(2) muscarinic acetylcholine receptor (mAChR) and A(1) adenosine receptor have been shown to activate G protein-activated inwardly rectifying K(+) channels (GIRKs) via pertussis toxin-sensitive G proteins in atrial myocytes and in many neuronal cells. Here we show that muscarinic M(2) receptors not only activate but also reversibly inhibit these K(+) currents when stimulated with agonist for up to 2 min. The M(2) mAChR-mediated inhibition of the channel was also observed when the channels were first activated by inclusion of guanosine 5'-O-(thiotriphosphate) in the pipette. Under these conditions the M(2) mAChR-induced inhibition was quasi-irreversible, suggesting a role for G proteins in the inhibitory process. In contrast, when GIRK currents were maximally activated by co-expressing exogenous Gbetagamma, the extent of acetylcholine (ACh)-induced inhibition was significantly reduced, suggesting competition between the receptor-mediated inhibition and the large pool of available Gbetagamma subunits. The signaling pathway that led to the ACh-induced inhibition of GIRK channels was unaffected by pertussis toxin pretreatment. Furthermore, the internalization and agonist-induced phosphorylation of M(2) mAChR was not required because a phosphorylation- and internalization-deficient mutant of the M(2) mAChR was as potent as the wild-type counterpart. Pharmacological agents modulating various protein kinases or phosphatidylinositol 3-kinase did not affect the inhibition of GIRK currents. Furthermore, the signaling pathway that mediates GIRK current inhibition was found to be membrane-delimited because bath application of ACh did not inhibit GIRK channel activity in cell-attached patches. Other G protein-coupled receptors including M(4) mAChR and alpha(1A) adrenergic receptors also caused the inhibition, whereas other G protein-coupled receptors including A(1) and A(3) adenosine receptors and alpha(2A) and alpha(2C) adrenergic receptors could not induce the inhibition. The presented results suggest the existence of a novel signaling pathway that can be activated selectively by M(2) and M(4) mAChR but not by adenosine receptors and that involves non-pertussis toxin-sensitive G proteins leading to an inhibition of Gbetagamma-activated GIRK currents in a membrane-delimited fashion.  相似文献   

15.
Phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) is considered to play a critical role in the desensitization of responses mediated by these receptors. To explore the role of GRK2 in A2 adenosine receptor desensitization, we attempted to reduce specifically GRK2 expression in NG108-15 cells by stable transfection with an antisense rat GRK2 cDNA sequence. This yielded up to a 69% loss of GRK2 when compared with plasmid-transfected control cells, which correlated with a reduction in kinase activity when measured by the ability of cell lysates to promote light-dependent phosphorylation of rhodopsin. Levels of GRK3 were the same in antisense and plasmid-transfected controls. On addition of the A2 adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine, cyclic AMP accumulation was greater in GRK2 antisense cells as compared with plasmid control cells. In contrast, cyclic AMP accumulation via agonist stimulation of either IP-prostanoid or secretin receptors or by addition of forskolin was not significantly different among all clones examined. The increase in A2 adenosine receptor response could not be explained by changes in A2A adenosine receptor expression, as assessed by ligand binding experiments with the radioligand 2-3H-labelled 4-[2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-++ +ylamino]ethyl]phenol ([3H]ZM241385). These data show for the first time a direct correlation between expression of GRK2 and desensitization of natively expressed A2 adenosine receptors in intact cells, suggesting that GRK2 plays a major role in the regulation of these receptors. Key Words: G protein-coupled receptor kinase-G protein-coupled receptor-Antisense-NG108-15 cells-A2 adenosine receptors-Desensitization.  相似文献   

16.
Upon the binding of their ligands, G protein-coupled receptors couple to the heterotrimeric G proteins to transduce a signal. One receptor family may couple to a single G protein subtype and another family to several ones. Is there a signal in the receptor sequence that can give an indication of the G protein subtype selectivity? We used a sequence analysis method on biogenic amine and adenosine receptors and concluded that a weak signal can be detected in receptor families where specialization for coupling to a given G protein occurred during a recent divergent evolutionary process. Proteins 2000;41:448-459.  相似文献   

17.
1. Several G-protein-coupled receptors (GPCRs) have been localized to various layers of the vertebrate retina, using autoradiographic and immunohistochemical techniques, but the functional data concerning G protein activation are limited. Here, we establish optimized assay conditions to detect receptor-dependent G protein activity in membranes and tissue sections of the rat retina. 2. Agonist-stimulated [35S]GTPgammaS-binding responses were characterized for the Gi/o-linked adenosine A1, cannabinoid CB1, m2/m4 muscarinic acetylcholine, and GABA(B) receptors. Initial assumption was that G protein activity under "basal conditions" is high due to enrichment and activity of rhodopsin and transducin in this tissue. 3. We found that pretreatment of retina membranes with hydroxylamine (10 mM), a rhodopsin-inactivating drug, substantially (up to 60%) reduced basal G protein activity, thereby improving signal-to-noise ratio to detect agonist-stimulated G protein activation for all studied receptors. [35S]GTPgammaS autoradiography revealed that hydroxylamine specifically reduced basal binding in the transducin-enriched photoreceptor layer. In contrast, hydroxylamine did not affect GPCR signaling in brain membranes, indicating specific action on retinal transducin. 4. For all studied receptors, [35S]GTPgammaS autoradiography allowed localization of G protein activity to different retinal layers, with the bulk of signal detected in the ganglion cell layer. Strongest responses were observed for adenosine and muscarinic receptor agonists. Additional G protein activity was detected in the inner plexiform layer. 5. Responses to all tested agonists were reversed in the presence of appropriate receptor-selective antagonists, indicating receptor-mediated G protein activation.  相似文献   

18.
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.  相似文献   

19.
Activated cardiac adenosine A(1) receptors translocate out of caveolae   总被引:6,自引:0,他引:6  
The cardiac affects of the purine nucleoside, adenosine, are well known. Adenosine increases coronary blood flow, exerts direct negative chronotropic and dromotropic effects, and exerts indirect anti-adrenergic effects. These effects of adenosine are mediated via the activation of specific G protein-coupled receptors. There is increasing evidence that caveolae play a role in the compartmentalization of receptors and second messengers in the vicinity of the plasma membrane. Several reports demonstrate that G protein-coupled receptors redistribute to caveolae in response to receptor occupation. In this study, we tested the hypothesis that adenosine A(1) receptors would translocate to caveolae in the presence of agonists. Surprisingly, in unstimulated rat cardiac ventricular myocytes, 67 +/- 5% of adenosine A(1) receptors were isolated with caveolae. However, incubation with the adenosine A(1) receptor agonist 2-chlorocyclopentyladenosine induced the rapid translocation of the A(1) receptors from caveolae into non-caveolae plasma membrane, an effect that was blocked by the adenosine A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. An adenosine A(2a) receptor agonist did not alter the localization of A(1) receptors to caveolae. These data suggest that the translocation of A(1) receptors out of caveolae and away from compartmentalized signaling molecules may explain why activation of ventricular myocyte A(1) receptors are associated with few direct effects.  相似文献   

20.
We have investigated the time course of rod photoreceptor determination in the goldfish retina. Rod precursor cells located in the outer nuclear layer of the mature retina continuously generate rod photoreceptors. In this study, we asked when rod precursor cells begin to express opsin, which would signal their commitment to the rod pathway of differentiation. There are three possibilities: a rod precursor could express opsin while still mitotic, at or shortly after the terminal mitosis but before differentiation, or during differentiation. We used immunocytochemistry with antibodies against bromodeoxyuridine, BrdU (a thymidine analogue) and against opsin to determine when during the mitotic history of a cell the expression of opsin first occurred, taking a double labelled cell to be evidence of commitment to the rod cell fate. We found that the first double labelled cells appeared at 4 days after BrdU injection. The number of double labelled cells increased to peak at 10 days, and then fell. These results support the hypothesis that dividing rod precursor cells are probably multipotent stem cells not committed to the rod cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号