首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

2.
GTP binding proteins: a key role in cellular communication   总被引:1,自引:0,他引:1  
J Bockaert  V Homburger  B Rouot 《Biochimie》1987,69(4):329-338
One of the major steps in the understanding of the hormonal and sensory transduction mechanisms in eukaryotic cells has been the discovery of a family of GTP binding proteins which couple receptors to specific cellular effectors. The absolute requirement of GTP for hormonal stimulation of adenylate cyclase was the initial observation which led to the purification of the protein involved: Gs. Gs couples stimulatory receptors to adenylate cyclase. It is a heterotrimer composed of an alpha chain (45 or 52 kDa), a beta chain (35-36 kDa) and a gamma chain (8 kDa). Several other G proteins of known functions have been purified: Gi, which couples inhibitory receptors to adenylate cyclase, and transducin which couples photoexcited rhodopsin to cyclic GMP phosphodiesterase. Some G proteins of uncertain function have also been purified: Go, a G protein mainly localized in nervous tissues and Gp, a G protein isolated from placenta and platelets. All these G proteins have a common design. Like Gs they all consist of 3 chains: alpha, beta and gamma. The beta chains are nearly identical, whereas the gamma chains are more variable. The alpha chains are different, but share common domains (especially at the level of the GTP binding site). These domains of homologies are also similar to those of other GTP binding proteins, such as the product of the ras gene (p21) and the initiation or elongation factors. alpha Chains are also ADP ribosylated by bacterial toxins. Gs and transducin are targets for cholera toxin, whereas Gi, Go and transducin are targets for pertussis toxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Both the light-stimulated cGMP phosphodiesterase of retinal rod outer segments (ROS) and hormone-stimulated adenylate cyclase are regulated by guanine nucleotide-binding regulatory proteins (N). Transducin serves as the signal-carrying regulatory protein in ROS, and the N protein (also called G or G/F) performs this role in the adenylate cyclase system. The GTP form of these regulatory proteins activates the corresponding enzyme, whereas the GDP form does not. Both transducin and the N protein possess a GTPase activity that restores the regulatory protein to the unstimulated state. Cholera enterotoxin catalyzes the transfer of ADP-ribose from NAD+ to the N protein, which inhibits its GTPase activity and activates adenylate cyclase. We report here that the toxin also catalyzes ADP-ribosylation of the alpha-subunit of transducin in ROS membranes. This modification of the guanine nucleotide-binding subunit of transducin is markedly enhanced by the bleaching of rhodopsin and by the addition of guanosine-5'-(beta, gamma-imino)triphosphate. In contrast, GDP, GTP, and guanosine-5'-(3-O)thiotriphosphate inhibit the reaction, while GMP and ATP have no effect. Under optimal conditions, toxin catalyzes labeling of 0.7 mol of the alpha-subunit of transducin/mol of bound [3H]guanosine-5'-(beta, gamma-imido)triphosphate and causes 70% inhibition of the light-dependent GTPase activity of transducin in ROS. These results indicate close functional homology between transducin of ROS and the N protein of adenylate cyclase.  相似文献   

4.
The effect of pertussis toxin on GTP-binding protein of bovine rod cell outer segments (transducin) was studied. Pertussis toxin was shown to ADP ribosylate either alpha subunit of free transducin or transducin-GDP complex, whereas GTP and its analogue Gpp(NH)p strongly inhibit ADP ribosylation of transducin. Pertussis toxin inhibits rod outer segment membrane GTPase and GTPase of homogeneous transducin by 40% and 70-80%, respectively. Activation of rod cell cyclic nucleotide phosphodiesterase by transducin is reduced after its preincubation with pertussis toxin. In transducin modified by pertussis toxin, 83% of GDP becomes tightly bound and cannot be exchanged with Gpp(NH)p. The stabilization of complex transducin-GDP after ADP ribosylation can explain the inhibitory effect of pertussis toxin on GTP hydrolysis by transducin, and on phosphodiesterase activation by guanyl nucleotides.  相似文献   

5.
R N Lolley  R H Lee 《FASEB journal》1990,4(12):3001-3008
A single photon can be detected by a rod photoreceptor cell. The absorption of light by rhodopsin triggers a cascade of reactions that amplifies the photon signal and results in ion channel closure with hyperpolarization of the rod photoreceptor cell. Light-induced conformational changes in rhodopsin facilitate the binding of a guanosine nucleotide-binding protein, transducin, which then undergoes a GTP-GDP exchange reaction and dissociation of the transducin complex. A subunit of transducin then activates a phosphodiesterase complex that hydrolyzes cyclic GMP. In darkness, cyclic GMP binds to cation channels of the photoreceptor plasma membrane, maintaining them in an open configuration. The light-induced reduction in cyclic GMP concentration dissociates the bound cyclic GMP, resulting in channel closure and hyperpolarization. Down-regulation of the cascade involves other proteins that block the interaction of transducin with rhodopsin and another protein that may interfere with transducin recycling. Cone photoreceptors possess a light-activated cascade that follows the rod format, but it is composed of proteins that are homologous to those of rod photoreceptors. Phototransduction in invertebrate photoreceptors uses rhodopsin to activate a cascade that uses phosphoinositides and calcium ion to regulate membrane polarization.  相似文献   

6.
G Yamanaka  F Eckstein  L Stryer 《Biochemistry》1985,24(27):8094-8101
The stereochemistry of the guanyl nucleotide binding site of transducin from bovine retinal rod outer segments was probed with phosphorothioate analogues of GTP and GDP. Transducin has markedly different affinities for the five thio analogues of GTP, as measured by their effectiveness in inhibiting GTPase activity, competing with GTP for entry into transducin, and displacing GDP bound to transducin. The order of binding affinities is GTP gamma S = (Sp)-GTP alpha S greater than (Rp)-GTP alpha S greater than (Sp)-GTP beta S much greater than (Rp)-GTP beta S. The affinity of transducin for GTP gamma S is greater than 10(4) higher than that for (Rp)-GTP beta S. These five analogues have the same relative potencies in eliciting the release of transducin from the membrane and in activating the phosphodiesterase. Transducin hydrolyzes (Sp)-GTP alpha S with a l/e time of 55 s, compared with 28 s for GTP. In contrast, (Rp)-GTP alpha S, like GTP gamma S, is not hydrolyzed on the time scale of several hours. The order of effectiveness of thio analogues of GDP in displacing bound GDP is (Sp)-GDP alpha S greater than GDP greater than (Rp)-GDP alpha S greater than GDP beta S. The affinity of transducin for (Sp)-GDP alpha S is about 10-fold higher than that for GDP beta S. Mg2+ is required for the binding of GTP and GDP to transducin. Cd2+ does not lead to a reversal of stereospecificity at either the alpha- or beta-phosphorus atom of GTP. These results lead to the following conclusions: The pro-R oxygen atom at the alpha-phosphorus of GTP does not bind Mg2+ but instead interacts with the protein. The pro-S oxygen at the alpha-phosphorus does not appear to be involved in a critical interaction with transducin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
L Ramdas  R M Disher  T G Wensel 《Biochemistry》1991,30(50):11637-11645
Transducin, the signal coupling protein of retinal rod photoreceptor cells, is one of a family of G proteins that can be inactivated by pertussis toxin. We have investigated the nature of this inactivation in order to determine (1) whether it requires the toxin-catalyzed transfer of ADP-ribose from NAD+ to cysteine-347 of the alpha subunit and (2) whether it involves locking the alpha subunit in the inactive conformation characteristic of its GDP-bound state, or is limited to disruption of binding to photoexcited rhodopsin (R*). Our results indicate that all observed effects of pertussis toxin treatment, including a shift in the electrophoretic mobility of transducin's alpha subunit and functional inactivation, require NAD+ and that the appearance of the shift parallels incorporation of ADP-ribose. We have also found that, apart from interactions with photoexcited rhodopsin, the functional properties of ADP-ribosylated transducin are essentially the same as those of unmodified transducin. Normal spontaneous nucleotide exchange kinetics and the ability to activate cGMP phosphodiesterase are preserved following quantitative ADP-ribosylation, as are the abilities to hydrolyze GTP, to bind to a dye affinity column, and to display enhanced fluorescence upon addition of Al3+ and F-. Thus, ADP-ribosylation merely blocks catalysis of transducin nucleotide exchange by R* and does not lock transducin in an inactive state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Light stimulates phospholipase A2 activity in rod outer segments (ROS) of bovine retina as measured by the liberation of arachidonate from phosphatidylcholine, in in vitro assays of dark-adapted ROS. A role for GTP-binding proteins (G or N proteins) in the light activation of phospholipase A2 is suggested by the capacity for guanosine 5'-O-(thiotriphosphate) (GTP gamma S) to activate phospholipase A2 in dark-adapted ROS. In contrast, addition of GTP gamma S coincident with light exposure inhibited the light activation of phospholipase A2, suggesting that phospholipase A2 activity in the ROS is under dual regulation by G proteins. Transducin, the major G protein of the ROS, mediates the activation of cGMP phosphodiesterase by light and is a substrate for both cholera and pertussis toxin. Treatment of dark-adapted ROS with either toxin inhibits both basal and light-activated phospholipase A2, mimicking the action of the toxins on the light-induced cGMP phosphodiesterase activity of ROS. There is a loss of light-sensitive phospholipase A2 activity coincident with extraction of transducin from ROS membranes. In addition, the light-sensitive phospholipase A2 activity can be partially restored by the addition of purified transducin to the extracted ROS membranes. Light activation of phospholipase A2 in ROS membranes thus occurs by a transducin-dependent mechanism.  相似文献   

9.
Transducin is a multi-subunit guanine-nucleotide-binding protein that mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase in retinal rod outer segments. Whereas the T alpha subunit of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunit may function to link physically T alpha with photolysed rhodopsin. In order to determine the binding sites of rhodopsin to transducin, we have synthesized eight peptides (Rhod-1 etc.) that correspond to the C-terminal regions of rhodopsin and to several external and one internal loop region. These peptides were tested for their inhibition of restored GTPase activity of purified transducin reconstituted into depleted rod-outer-segment disc membranes. A marked inhibition of GTPase activity was observed when transducin was pre-incubated with peptides Rhod-1, Rhod-2 and Rhod-3. These peptides correspond to opsin amino acid residues 332-339, 324-331 and 317-321 respectively. Peptides corresponding to the three external loop regions or to the C-terminal residues 341-348 did not inhibit reconsituted GTPase activity. Likewise, Rhod-8, a peptide corresponding to an internal loop region of rhodopsin, did not inhibit GTPase activity. These findings support the concept that these specific regions of the C-terminus of rhodopsin serve as recognition sites for transducin.  相似文献   

10.
Binding of inositol phosphates to arrestin.   总被引:7,自引:0,他引:7  
Arrestin binds to phosphorylated rhodopsin in its light-activated form (metarhodopsin II), blocking thereby its interaction with the G-protein, transducin. In this study, we show that highly phosphorylated forms of inositol compete against the arrestin-rhodopsin interaction. Competition curves and direct binding assays with free arrestin consistently yield affinities in the micromolar range; for example, inositol 1,3,4,5-tetrakisphosphate (InP4) and inositol hexakisphosphate (InP6 bind to arrestin with dissociation constants of 12 microM and 5 microM, respectively. Only a small control amount of inositol phosphates is bound, when arrestin interacts with phosphorylated rhodopsin. This argues for a release of bound inositol phosphates by interaction with rhodopsin. Transducin, rhodopsin kinase, or cyclic GMP phosphodiesterase are not affected by inositol phosphates. These observations open a new way to purify arrestin and to inhibit its interaction with rhodopsin. Their physiological significance deserves further investigation.  相似文献   

11.
In the presence of guanyl nucleotides and rhodopsin-containing retinal rod outer segment membranes, transducin stimulates the light-sensitive cyclic nucleotide phosphodiesterase 5.5-7 times. The activation constant (Ka) for GTP and Gpp(NH)p is 0.25 microM, that for GDP and GDP beta S is 14 and 110 microM, respectively. GDP purified from other nucleotide contaminations at concentrations up to 1 mM does not stimulate phosphodiesterase but binds to transducin and inhibits the Gpp(NH)p-dependent activation of phosphodiesterase. The mode of transducin interaction with bleached rhodopsin also depends on the nature of the bound guanyl nucleotide: in the presence of GDP rhodopsin-containing membranes bind 70-100% of transducin, whereas in the presence of Gpp(NH)p the membranes bind only 13% of the protein. The experimental results suggest that GDP and GTP convert transducin into two different functional states, i.e., the transducin X GTP complex binds to phosphodiesterase causing its stimulation, while the transducin X GDP complex is predominantly bound to rhodopsin.  相似文献   

12.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

13.
The visual transduction cascade of the retinal rod outer segment responds to light by decreasing membrane current. This ion channel is controlled by cyclic GMP which is, in turn, controlled by its synthesis and degradation by guanylate cyclase and phosphodiesterase, respectively. When light bleaches rhodopsin there is an induced exchange of GTP for GDP bound to the alpha subunit of the retinal G-protein, transducin (T). The T alpha.GTP then removes the inhibitory constraint of a small inhibitory subunit (PDE gamma) on the retinal cGMP phosphodiesterase (PDE). This results in activation of the PDE and in hydrolysis of cGMP. Recently both low and high affinity binding sites have been identified for PDE gamma on the PDE alpha/beta catalytic subunits. The discovery of two PDE gamma subunits, each with different binding affinities, suggests that a tightly regulated shut-off mechanism may be present.  相似文献   

14.
Transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system, is structurally and functionally similar to the inhibitory and stimulatory guanyl nucleotide-binding proteins, Gi and Gs, of the adenylate cyclase complex. All are heterotrimers composed of alpha, beta, and gamma subunits. Gs and Gi can be activated by NaF with AlCl3 as well as by agonists acting through specific receptors. The effects of NaF and AlCl3 on transducin were investigated in a reconstituted system consisting of the purified subunits of transducin (T alpha, T beta, gamma) and rhodopsin. NaF noncompetitively inhibited the GTPase activity of T alpha in a concentration- and time-dependent manner. Inhibition by NaF was enhanced synergistically by AlCl3 which alone only slightly inhibited GTPase activity. None of the other anions tested reproduced the effect of fluoride. Fluoride inhibited [3H]guanosine 5'-(beta, gamma-imido)triphosphate binding to T alpha and release of bound GDP. The ADP-ribosylation of T alpha by pertussis toxin and binding of T alpha to rhodopsin, both of which are enhanced in the presence of T beta gamma, were inhibited by NaF and AlCl3. These findings are consistent with the hypothesis that fluoride enhances the dissociation of T alpha from T beta gamma, resulting in the inhibition of GTP-GDP exchange, and therefore, GTP hydrolysis.  相似文献   

15.
J Bigay  P Deterre  C Pfister    M Chabre 《The EMBO journal》1987,6(10):2907-2913
Fluoride activation of G proteins requires the presence of aluminium or beryllium and it has been suggested that AIF4- acts as an analogue of the gamma-phosphate of GTP in the nucleotide site. We have investigated the action of AIF4- or of BeF3- on transducin (T), the G protein of the retinal rods, either indirectly through the activation of cGMP phosphodiesterase, or more directly through their effects on the conformation of transducin itself. In the presence of AIF4- or BeF3-, purified T alpha subunit of transducin activates purified cyclic GMP phosphodiesterase (PDE) in the absence of photoactivated rhodopsin. Activation is totally reversed by elution of fluoride or partially reversed by addition of excess T beta gamma. Activation requires that GDP or a suitable analogue be bound to T alpha: T alpha-GDP and T alpha-GDP alpha S are activable by fluorides, but not T alpha-GDP beta S, nor T alpha that has released its nucleotide upon binding to photoexcited rhodopsin. Analysis of previous works on other G proteins and with other nucleotide analogues confirm that in all cases fluoride activation requires that a GDP unsubstituted at its beta phosphate be bound in T alpha. By contrast with alumino-fluoride complexes, which can adopt various coordination geometries, all beryllium fluoride complexes are tetracoordinated, with a Be-F bond length of 1.55 A, and strictly isomorphous to a phosphate group. Our study confirms that fluoride activation of transducin results from a reversible binding of the metal-fluoride complex in the nucleotide site of T alpha, next to the beta phosphate of GDP, as an analogue of the gamma phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The first 15 years, or so, brought the realization that there existed a G protein coupled signal transduction mechanism by which hormone receptors regulate adenylyl cyclases and the light receptor rhodopsin activates visual phosphodiesterase. Three G proteins, Gs, Gi and transducin (T) had been characterized as αβγ heterotrimers, and Gsα-GTP and Tα-GTP had been identified as the sigaling arms of Gs and T. These discoveries were made using classical biochemical approaches, and culminated in the purification of these G proteins. The second 15 years, or so, are the subject of the present review. This time coincided with the advent of powerful recombinant DNA techniques. Combined with the classical approaches, the field expanded the repertoire of G proteins from 3 to 16, discovered the superfamily of seven transmembrane G protein coupled receptors (GPCRs) - which is not addressed in this article - and uncovered an amazing repertoire of effector functions regulated not only by αGTP complexes but also by βγ dimers. Emphasis is placed in presenting how the field developed with the hope of conveying why many of the new findings were made.  相似文献   

17.
Transducin is the retinal rod outer segment (ROS)-specific G protein coupling the photoexcited rhodopsin to cyclic GMP-phosphodiesterase. The alpha subunit of transducin is known to be ADP-ribosylated by bacterial toxins. We investigated the possibility that transducin is modified in vitro by an endogenous ADP-ribosyltransferase activity. By using either ROS, cytosolic extract of ROS or purified transducin in the presence of [alpha-32P]nicotinamide adenine dinucleotide (NAD+), the alpha and beta subunits of transducin were found to be radiolabeled. The labeling was decreased by snake venom phosphodiesterase I (PDE I). The modification was shown to be mono ADP-ribosylation by analyses on thin layer chromatography of the PDE I-hydrolyzed products which revealed only 5'AMP residues. In addition we report that sodium nitroprusside activates the ADP-ribosylation of transducin.  相似文献   

18.
A light-stimulated increase of cyclic GMP in squid photoreceptors   总被引:5,自引:0,他引:5  
H R Saibil 《FEBS letters》1984,168(2):213-216
Photoreceptor outer segments isolated from squid retina are known to contain a light-activated GTP-binding protein. Here it is shown that these photoreceptors contain around 0.01 mol cyclic GMP per mol rhodopsin. Adding GTP in the dark stimulates the production of 0.0003-0.001 mol cyclic GMP/mol rhodopsin per min. GTP and light cause a 2-fold faster increase in cyclic GMP. These results show that either (1) squid rhodopsin activates a guanylate cyclase, or (2) there is a constant guanylate cyclase activity and photoexcited rhodopsin inhibits a cyclic GMP phosphodiesterase.  相似文献   

19.
Rat glioma C6 BU1 cells contain a pertussis toxin substrate of 40 kDa which does not appear to be identical with Gi,Go or transducin. The GTP analogue, GTP[gamma S], inhibited the rate of pertussis toxin-catalysed ADPribosylation of this protein, while the GDP analogue GDP[beta S] stimulated this reaction. A protein of the same kDa value was ADPribosylated by cholera toxin in the absence of added guanine nucleotides. It is suggested that this 40 kDa protein can be a substrate for both cholera and pertussis toxins under appropriate conditions.  相似文献   

20.
Two distinct light-regulated G-proteins were found in octopus photoreceptors. Gip, a 41 kDa protein from washed microvilli, was ADP ribosylated by pertussis toxin in the presence of GDP in the dark. Light and GTP analogues were inhibitory as with transducin (Gt; G-protein in vertebrate photoreceptors). G34, a 34 kDa protein from fresh octopus retina, was ADP ribosylated by both cholera and pertussis toxin in the dark. Light inhibited labeling of the 34 kDa protein by both toxins. Unlike Gip, G34 is soluble and is very labile to heat, freezing and thawing. Prolonged incubation of octopus retina with cholera toxin and labeled NAD produced an additional radioactive band at 46 kDa. Labeling of the 46 kDa protein, Gsp, was greatly enhanced by GTP analogues, but inhibited by a GDP analogue as with Gs in hormone-sensitive adenylate cyclase. In contrast to Gip and G34, labeling of the 46 kDa protein (Gsp) was not influenced by light. The two distinct light-regulated G-proteins, Gip and G34, found in octopus photoreceptors might be involved in either phototransduction or photoadaptation. The function of Gsp is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号