首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cataractous lenses have been found to have a distribution of the intracellular ionic environment, the concentrations of potassium and magnesium decreasing and the concentrations of sodium and calcium increasing relative to the cytosol of most cells. This arises as a result of changes to lens membrane characteristics causing an increase in lens membrane permeability. These changes have been found to be initiated as a result of normal ageing of the human lens. In this study, total Ca2+, K+, Na+ and Mg2+ contents have been determined in human normal and cataractous lenses using atomic absorption and flame emission spectroscopy. The normal human lens Ca2+ is between 0.15 and 0.5 miromol g(-1) fresh lens weight; in senile cataracts the value increased up to 9.31 micromol g(-1) ( p < 0.0001). The normal levels of Na+, Mg2+ and K+ are 20, 5.5 and 60 micromol g(-1) respectively; these changed to 136.10, 3.60 and 9.33 micro mol g(-1), respectively in cataractous senile human lenses ( p < 0.002, p < 0.002 and p < 0.01). The remarkable differences in these elements may play some role in cataractogenesis.  相似文献   

2.
Cataractous lenses have been found to have an altered distribution of the intracellular ionic environment: the concentrations of potassium and magnesium being decreased and the concentrations of sodium and calcium increased. These changes arise as a result of changes to lens membrane characteristics causing an increase in lens membrane permeability. In this study flame atomic absorption spectroscopy (AAS) was used for calcium, magnesium, iron and zinc determination, and flame atomic emission spectroscopy (AES) was used for sodium and potassium contents in normal and cigarette smoke-exposed rat lenses. The methods are sensitive enough to detect quantitatively all six cations in a single rat lenses. In this work, six elements, including Ca2+, K+, Na+, Zn2+, Fe2+ and Mg2+ in experimental rat eye lenses and normal transparent lenses were determined. It was found that the concentrations of Ca2+, Na+, Zn2+, and Fe2+ were increased dramatically while K+ and Mg2+ decreased in smoke-exposed rat lenses when compared to the control rat lenses. There were no significant changes between 'smoked' rats supplied with vitamin C and control groups. A positive correlation was found also in the other two groups of 'cigarette smoked' animals supplemented with selenium plus vitamin E and selenium when compared with 'cigarette smoked' without any supplements. These data provide support for the hypothesis that cigarette smoking increases the risk of cataract formation. We investigated whether vitamin C is the most important antioxidant in the body. The roles of diet with optimum amounts of antioxidant vitamins C and vitamin E and the antioxidant mineral selenium are discussed.  相似文献   

3.
Oxidative damage to lens proteins and glutathione depletion play a major role in the development of senile cataract. We previously found that a deficiency in gamma-cystathionase activity may be responsible for glutathione depletion in old lenses. The aims of this study were: (1) to investigate the mechanism that causes the age-related deficiency in gamma-cystathionase activity in the eye lens, and (2) to determine the role of gamma-cystathionase deficiency in cataractogenesis. Two populations of old rats were found, one (56%) whose lenses lacked gamma-cystathionase activity and the rest that exhibited detectable enzyme activity. gamma-Cystathionase protein was absent in lenses from old rats without gamma-cystathionase activity. Oxidative stress targeted gamma-cystathionase in the eye lens upon aging, since the enzyme contained more carbonyl groups in old lenses than in young ones. gamma-Cystathionase mRNA was also markedly reduced in old lenses, thus contributing to the age-associated deficiency in gamma-cystathionase. Inhibition of gamma-cystathionase activity caused glutathione depletion in lenses and led to cataractogenesis in vitro. In conclusion, the lack of gamma-cystathionase activity in over 50% of old lenses is due to decreased gene expression and proteolytic degradation of the oxidized enzyme. This results in a high risk for the development of senile cataract.  相似文献   

4.
Recent studies show a relationship between oxidants, antioxidants, and degenerative disease of aging like cataract formation. Focal lens cortical changes and cortical liquification have been reported in patients with Down syndrome (DS) over 14 years. There is evidence supporting the hypothesis that trisomy 21 patients have an increase in free radical reactions. These changes in antioxidant system may play a role in cataractogenesis in Down syndrome. We screened serum samples from 12 patients with DS and cataract: and 12 healthy age and sex-matched persons. We evaluated the antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in erythrocytes. SOD and GSHPx levels of patients with DS were significantly higher than the control group. No significant changes were observed in GST and GSH levels between the DS and control groups. These findings suggest impairment in antioxidant system, which may be a possible mechanism for early cataract formation in DS.  相似文献   

5.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

6.
The aim of this study was to investigate whether curcumin and aminoguanidine (AG) prevent selenium-induced cataractogenesis in vitro. On postpartum day 8, transparent isolated lens were incubated in 24 well plates containing Dulbecco's Modified Eagle Medium (DMEM). Isolated lens of group I were incubated with DMEM medium alone. Group II: lenses incubated in DMEM containing 100 μM sodium selenite; group III: lenses incubated in DMEM containing 100 μM sodium selenite and 100 μM curcumin; group IV: lenses incubated in DMEM containing 100 μM sodium selenite and 200 μM curcumin; group V: lenses incubated in DMEM containing 100 μM sodium selenite and 100 μM AG; group V: lenses incubated in DMEM containing 100 μM sodium selenite and 200 μM AG. On day 12, cataract development was graded using an inverted microscope and the lenses were analyzed for enzymic as well as non-enzymic antioxidants, lipid peroxidation (LPO), nitric oxide (NO), superoxide anion (O2) and hydroxyl radical generation (OH) and inducible nitric oxide synthase (iNOS) activity by Western blotting and RT-PCR. All control lenses in group I were clear (0). In groups II and III, all isolated lenses developed cataract with variation in levels (+++ or ++), whereas isolated lenses from groups IV, V and VI were clear (0). In agreement to this, a decrease in antioxidants and increased free radical generation and also iNOS expression were observed in selenium exposed lenses when compared to other groups. AG (100 μM) was found to be more effective in anti-cataractogenic effect than curcumin (200 μM). Curcumin and AG suppressed selenium-induced oxidative stress and cataract formation in isolated lens from Wistar rat pups, possibly by inhibiting depletion of enzymic as well as non-enzymic antioxidants, and preventing uncontrolled generation of free radicals and also by inhibiting iNOS expression. Our results implicate a major role for curcumin and AG in preventing cataractogenesis in selenite-exposed lenses, wherein AG was found to be more potent.  相似文献   

7.
Analysis of aged and cataract lenses shows the presence of increased amounts of crystallin fragments in the high molecular weight aggregates of water-soluble and water-insoluble fractions. However, the significance of accumulation and interaction of low molecular weight crystallin fragments in aging and cataract development is not clearly understood. In this study, 23 low molecular mass (<3.5-kDa) peptides in the urea-soluble fractions of young, aged, and aged cataract human lenses were identified by mass spectroscopy. Two peptides, alphaB-(1-18) (MDIAIHHPWIRRPFFPFH) and betaA3/A1-(59-74) (SD(N)AYHIERLMSFRPIC), present in aged and cataract lens but not young lens, and a third peptide, gammaS-(167-178) (SPAVQSFRRIVE) present in all three lens groups were synthesized to study the effects of interaction of these peptides with intact alpha-, beta-, and gamma-crystallins and alcohol dehydrogenase, a protein used in aggregation studies. Interaction of alphaB-(1-18) and betaA3/A1-(59-74) peptides increased the scattering of light by beta- and gamma-crystallin and alcohol dehydrogenase. The ability of alpha-crystallin subunits to function as molecular chaperones was significantly reduced by interaction with alphaB-(1-18) and betaA3/A1-(59-74) peptides, whereas gammaS peptide had no effect on chaperone-like activity of alpha-crystallin. The betaA3/A1-(59-74 peptide caused a 5.64-fold increase in alphaB-crystallin oligomeric mass and partial precipitation. Replacing hydrophobic residues in alphaB-(1-18) and betaA3/A1-(59-74) peptides abolished their ability to induce crystallin aggregation and light scattering. Our study suggests that interaction of crystallin-derived peptides with intact crystallins could be a key event in age-related protein aggregation in lens and cataractogenesis.  相似文献   

8.
The aim of this study was to investigate the effect of different cytidine-5'-diphosphocholine (CDP-choline) concentrations (0.1-1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg(2+)-ATPase activities in homogenates of adult and aged rat hippocampi. Tissues were homogenised, centrifuged at 1000 x g for 10 min and in the supernatant, AChE activity and Na+,K(+)-ATPase and Mg(2+)-ATPase activities were determined according to Ellman's method and Bowler's and Tirri's method, respectively. After an 1-3 h preincubation of the homogenised tissue with CDP-choline, a maximal AChE stimulation of about 25% for both adult and aged rats (p < 0.001) and a Na+,K(+)-ATPase activation of about 50% for adult rats (p < 0.001) and about 60% for aged rats (p < 0.001) were observed, while hippocampal Mg(2+)-ATPase activity was not influenced in either adult or aged animals. It is suggested that: CDP-choline can restore hippocampal AChE and Na+,K(+)-ATPase activities in the aged rat and thus it may play a role in improving memory performance which is impaired by aging and some neuronal disturbances.  相似文献   

9.
Effects of pH and metal ions on antioxidative activities of catechins   总被引:11,自引:0,他引:11  
The Effects of pH on antioxidative activities of catechol, pyrogallol, and four catechins, and effects of metal ions (Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, K+, Mg2+, Mn2+, Na+, and Zn2+) on antioxidative activities of (-)-epigallocatechin gallate (EGCG) were studied by an oxygen electrode method. The antioxidative activities of catechins were high and constant at pH 6-12, but decreased in acidic and strong alkaline solutions. Copper(II) ion the most strongly increased the antioxidative activity of EGCG among these metal ions examined, but iron(II) ion largely inhibited the antioxidative activity of EGCG. These effects are discussed considering the formation of metal complexes with catechins and the change in oxidation potentials.  相似文献   

10.
We found a female cataractous DDD/1-nu/+ mouse and established a hairy mutant strain (DDD/1-Cti/Cti) with 100% incidence of cataract from it by repeating sibmating. Genetic studies demonstrated that a single autosomal semidominant gene controls cataractogenesis. This gene was named Cti. In homozygotes, DDD/1-Cti/Cti, the lenses began to opacify at 14 days of fetal life and were recognized clinically as cataract at 13-14 days of age when the eyes first open. The opacification became more and more intense with age and looked like mature cataract at 28-42 days of age. However, clarification of the opacified lenses commenced at the periphery after 56 days of age and expanded to the inside with time, and only an opaque spot was left at the center at 140 days of age. In heterozygotes, DDD/1-Cti/+, the lenses were recognizable as cataract after 28 days and became like mature cataract around 35 days of age. The opacity began to be lightened at 42 days and the lenses appeared normal at 56 days of age. Both lenses and eyeballs developed in similar courses in DDD/1(-)+/+, -Cti/+ and -Cti/Cti, although slightly retarded in the last. Microphthalmia was not accompanied even in DDD/1-Cti/Cti. The lens water content remained higher during the time when intense lens opacity continued in DDD/1-Cti/Cti and -Cti/+. Background genes appeared to affect the expression of Cti. DDD/1-Cti(-)+ mice may provide a model for researches into clarification of opaque lenses. A discussion concerning the possible allelism of Cti and Cts with Lop was made based on their phenotypic characteristics.  相似文献   

11.
The Na+,K(+)-ATPase is a membrane-bound, sulfhydryl-containing protein whose activity is critical to maintenance of cell viability. The susceptibility of the enzyme to radical-induced membrane lipid peroxidation was determined following incorporation of a purified Na+,K(+)-ATPase into soybean phosphatidylcholine liposomes. Treatment of liposomes with Fenton's reagent (Fe2+/H2O2) resulted in malondialdehyde formation and total loss of Na+,K(+)-ATPase activity. At 150 microM Fe2+/75 microM H2O2, vitamin E (5 mol%) totally prevented lipid peroxidation but not the loss of enzyme activity. Lipid peroxidation initiated by 25 microM Fe2+/12.5 microM H2O2 led to a loss of Na+,K(+)-ATPase activity, however, vitamin E (1.2 mol%) prevented both malondialdehyde formation and loss of enzyme activity. In the absence of liposomes, there was complete loss of Na+,K(+)-ATPase activity in the presence of 150 microM Fe2+/75 microM H2O2, but little effect by 25 microM Fe2+/12.5 microM H2O2. The activity of the enzyme was also highly sensitive to radicals generated by the reaction of Fe2+ with cumene hydroperoxide, t-butylhydroperoxide, and linoleic acid hydroperoxide. Lipid peroxidation initiated by 150 microM Fe2+/150 microM Fe3+, an oxidant which may be generated by the Fenton's reaction, inactivated the enzyme. In this system, inhibition of malondialdehyde formation by vitamin E prevented loss of Na+,K(+)-ATPase activity. These data demonstrate the susceptibility of the Na+,K(+)-ATPase to radicals produced during lipid peroxidation and indicate that the ability of vitamin E to prevent loss of enzyme activity is highly dependent upon both the nature and the concentration of the initiating and propagating radical species.  相似文献   

12.
We have examined the gastric luminal content of Na+, K+, and protein and mucosal levels of myeloperoxidase in rats between the ages of 10 and 60 days in response to luminal instillation of ethanol (20 and 50% w/v). In control animals the appearances of ions and protein and myeloperoxidase activities were low and similar in all age groups. Luminal content of cations and protein increased in response to both 20 and 50% ethanol and were greater in animals older than 20 days when compared with younger rats. However, ethanol treatment resulted in a significant degree of mucosal cellular disruption and erosions in both young and mature rats. Myeloperoxidase activities in response to ethanol were not greater than control until animals were older than 20 days. Treatment of rats aged 10-60 days with intraperitoneal glycogen (1%) resulted in peritoneal granulocyte infiltration. The concentration of peritoneal cells increased as animals aged. With the exception of day 15, the myeloperoxidase content of the peritoneal leukocytes did not vary significantly at other ages examined. These data suggest that (1) mucosal efflux of Na+, K+, and protein in response to luminal ethanol increase as rats age from 10 to 60 days; (2) the ontogenic development of ethanol-induced cation and protein appearance parallel the increase in myeloperoxidase activity in the gastric mucosa; and (3) the increase in mucosal myeloperoxidase activity in response to ethanol likely reflects increased granulocyte infiltration as rats age.  相似文献   

13.
The Shumiya cataract rat (SCR) is a hereditary cataract model in which lens opacity appears spontaneously in the nuclear and perinuclear portions at 11-12 weeks of age. We found incidentally that the oral administration of aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase (iNOS), strongly inhibits the development of lens opacification in SCR. Since our previous results strongly suggested that calpain-mediated proteolysis contributes to lens opacification during cataract formation in SCR, we examined the calpain-mediated proteolysis in AG-treated SCR lenses in detail. The results show that the calpain-mediated limited proteolysis of crystallins is also inhibited by AG-treatment. However, the administration of AG has no effect on the substrate susceptibility to calpain. On the other hand, the autolytic activation of calpain in AG-treated lenses is strongly inhibited, although AG itself does not inhibit calpain activity in vitro. Then, we analyzed the effect of AG-treatment on calcium concentrations in lens, and found that the elevation in calcium concentration that should occur prior to cataractogenesis in lenses is strongly suppressed by AG-treatment. These results strengthen our previous conclusion that calpain-mediated proteolysis plays a critical role in the development of lens opacification in SCR. Moreover, our results indicate that the inhibition of calpain-mediated proteolysis by AG-treatment is due to the suppression of calcium ion influx into the lens cells.  相似文献   

14.
We have previously shown that biologically uncommon d-beta-aspartic acids (Asp) were localized with very high contents at Asp-151 and Asp-58 of alpha A-crystallin from aged human lenses. The amounts increased with age, and we have proposed the mechanism of this reaction. In the present study, in order to elucidate the possible relationship between the formation of d-beta-aspartic acids in alpha A-crystallin and cataract formation, we measured the d/l ratio of beta-Asp-151 of alpha A-crystallin from both cataractous and age-matched normal human lenses. alpha A-crystallin from total proteins of cataractous and age-matched normal lenses was prepared, followed by tryptic digestion and quantification of d/l ratios for tryptic fragments containing the alpha- and beta-aspartate forms of Asp-151 residues. The results demonstrate that the d/l ratio of beta-Asp-151 of alpha A-crystallin from normal lenses is not statistically significant from that of alpha A-crystallin from cataractous lenses, suggesting that formation of this biologically uncommon amino acid may not play a role in human cataractogenesis.  相似文献   

15.
The osmoregulatory action of 17beta-estradiol (E2) was examined in the euryhaline teleost Sparus auratas. In a first set of experiments, fish were injected once with vegetable oil containing E2 (1, 2 and 5 microg/g body weight), transferred 12h after injection from sea water (SW, 38 ppt salinity) to hypersaline water (HSW, 55 ppt) or to brackish water (BW, 5 ppt salinity) and sampled 12h later (i.e. 24 h post-injection). In a second experiment, fish were injected intraperitoneally with coconut oil alone or containing E2 (10 microg/g body weight) and sampled after 5 days. In the same experiment, after 5 days of treatment, fish of each group were transferred to HSW, BW and SW and sampled 4 days later (9 days post-implant). Gill Na+,K+ -ATPase activity, plasma E2 levels, plasma osmolality, and plasma levels of ions (sodium and calcium), glucose, lactate, protein, triglyceride, and hepatosomatic index were examined. Transfer from SW to HSW produced no significant effects on any parameters assessed. E2 treatment did not affect any parameter. Transfer from SW to BW resulted in a significant decrease in plasma osmolality and plasma sodium but did not affect gill Na+,K+ -ATPase activity. A single dose of E2 attenuated the decrease in these parameters after transfer from SW to BW, but was without effect on gill Na+,K+ -ATPase activity. An implant of E2 (10 microg/g body weight) for 5 days significantly increased plasma calcium, hepatosomatic index, plasma metabolic parameters, and gill Na+,K+ -ATPase activity. In coconut oil-implanted (sham) fish, transfer from SW to HSW or BW during 4 days significantly elevated gill Na+,K+ -ATPase. Gill Na+,K+ -ATPase activity remained unaltered after transfer of E2-treated fish to HSW or BW. However, in E2-treated fish transferred from SW to SW (9 days in SW after E2-implant), gill Na+,K+ -ATPase activity decreased with respect to HSW- or BW-transferred fish. Shams transferred to HSW showed increased levels of lactate, protein, and trygliceride in plasma, while those transferred to BW only displayed increased trygliceride levels. E2-treated fish transferred to HSW showed higher protein levels without any change in other plasmatic parameters, while those transferred to BW displayed elevated plasma glucose levels but decreased osmolality and protein levels. These results substantiate a chronic stimulatory action of E2 on gill Na+,K+ -ATPase activity in the euryhaline teleost Sparus auratas.  相似文献   

16.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

17.
Post‐translational modifications in lens proteins are key causal factors in cataract. As the most abundant post‐translational modification in the lens, racemization may be closely related to the pathogenesis of cataract. Racemization of αA‐crystallin, a crucial structural and heat shock protein in the human lens, could significantly influence its structure and function. In previous studies, elevated racemization from l ‐Asp 58 to d ‐isoAsp58 in αA‐crystallin has been found in age‐related cataract (ARC) lenses compared to normal aged human lenses. However, the role of racemization in high myopic cataract (HMC), which is characterized by an early onset of nuclear cataract, remains unknown. In the current study, apparently different from ARC, significantly increased racemization from l ‐Asp 58 to d ‐Asp 58 in αA‐crystallin was identified in HMC lenses. The average racemization rates for each Asp isoform were calculated in ARC and HMC group. In ARC patients, the conversion of l ‐Asp 58 to d ‐isoAsp 58, up to 31.89%, accounted for the main proportion in racemization, which was in accordance with the previous studies. However, in HMC lenses, the conversion of l ‐Asp 58 to d ‐Asp 58, as high as 35.44%, accounted for the largest proportion of racemization in αA‐crystallin. The different trend in the conversion of αA‐crystallin by racemization, especially the elevated level of d ‐Asp 58 in HMC lenses, might prompt early cataractogenesis and a possible explanation of distinct phenotypes of cataract in HMC.  相似文献   

18.
Na+,K+-ATPase (porcine alpha/his10-beta) has been expressed in Pichia Pastoris, solubilized in n-dodecyl-beta-maltoside and purified to 70-80% purity by nickel-nitrilotriacetic acid chromatography combined with size exclusion chromatography. The recombinant protein is inactive if the purification is done without added phospholipids. The neutral phospholipid, dioleoylphosphatidylcholine, preserves Na+,K+-ATPase activity of protein prepared in a Na+-containing medium, but activity is lost in a K+-containing medium. By contrast, the acid phospholipid, dioleoylphosphatidylserine, preserves activity in either Na+- or K+-containing media. In optimal conditions activity is preserved for about 2 weeks at 0 degrees C. Both recombinant Na+,K+-ATPase and native pig kidney Na+,K+-ATPase, dissolved in n-dodecyl-beta-maltoside, appear to be mainly stable monomers (alpha/beta) as judged by size exclusion chromatography and sedimentation velocity. Na+,K+-ATPase activities at 37 degrees C of the size exclusion chromatography-purified recombinant and renal Na+,K+-ATPase are comparable but are lower than that of membrane-bound renal Na+,K+-ATPase. The beta subunit is expressed in Pichia Pastoris as two lightly glycosylated polypeptides and is quantitatively deglycosylated by endoglycosidase-H at 0 degrees C, to a single polypeptide. Deglycosylation inactivates Na+,K+-ATPase prepared with dioleoylphosphatidylcholine, whereas dioleoylphosphatidylserine protects after deglycosylation, and Na+,K+-ATPase activity is preserved. This work demonstrates an essential role of phospholipid interactions with Na+,K+-ATPase, including a direct interaction of dioleoylphosphatidylserine, and possibly another interaction of either the neutral or acid phospholipid. Additional lipid effects are likely. A role for the beta subunit in stabilizing conformations of Na+,K+-ATPase (or H+,K+-ATPase) with occluded K+ ions can also be inferred. Purified recombinant Na+,K+-ATPase could become an important experimental tool for various purposes, including, hopefully, structural work.  相似文献   

19.
Trypsin inhibition (reduction in benzoyl arginine p-nitroanilide hydrolysis), elastase inhibition (reduction in succinyl trialanyl p-nitroanilide hydrolysis), and chymotrypsin inhibition (reduction in acetyl tyrosine ethyl ester hydrolysis) by neutral extracts of mammalian lenses were estimated. The activities were found to be markedly elevated in human cortical cataract lenses compared to normal adult lenses (antielastase 7.21 +/- 3.90 units (mean +/- SD) in cataract compared to 1.46 +/- 0.57 in normals; antitryptic, 0.54 +/- 0.38 and 0.12 +/- 0.04; antichymotryptic, 1.03 +/- 0.61 and 0.297 +/- 0.055). Antielastase activity was distinctly higher in adult normal human lenses compared to infant lenses (0.159 +/- 0.068). Elastase- and trypsin-like activities were detected at low levels in all mammalian lenses. Chymotrypsin-like activity could not be observed in the lenses. The cataractous lenses had lower trypsin- and elastase-like activities compared to normal human lenses (elastase 1.20 +/- 0.643 in normal compared to 0.062 +/- 0.035 in cataract; trypsin, 0.367 +/- 0.154 and 0.069 +/- 0.038). The role of protease: inhibitor complexes in the expression of the individual activities and their role in cataractogenesis are discussed.  相似文献   

20.
Age-related changes in ouabain binding to synaptic plasma membranes isolated from cerebral cortices of C57BL/6 mice were investigated to examine whether the density of Na+, K(+)-ATPase decreases with advancing age. Specific binding of [3H]ouabain did not change until around 20 months of age, but a 22% decrease in binding was found in the late senescent stage (29 months). Scatchard analysis of the binding revealed that the maximum number of binding sites (Bmax) was lower in aged mice, while the binding affinity (Kd) for ouabain receptor remained unchanged with aging. These results indicate that the density of Na+,K(+)-ATPase enzyme sites in the plasma membranes of brain synapses decreases in aged mice. Since the activity of Na+,K(+)-ATPase has been found to start declining at a much earlier stage [Tanaka, Y. & Ando, S. (1990) Brain Res. 506, 46-52; Ando, S. & Tanaka, Y. (1990) Gerontology 36, 10-14] than that at which the decrease of Bmax is manifested, at least two mechanisms may underlie the age-related decrease of the enzyme activity. We speculate that the lipid microenvironment which regulates the enzyme activity starts to change at the early stage of senescence, followed by the decrease in the enzyme content in the later stage, that is, both changes cooperatively diminish the Na+,K(+)-ATPase activity in senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号