首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this study was to investigate the ability of immune cells of the small intestine to produce highly reactive free radicals from the food additive sulfites. These free radicals were characterized with a spin-trapping technique using the spin traps 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the presence of glucose, purified lymphocytes from intestinal Peyer's patches (PP) and mesenteric lymph nodes (MLN) were stimulated with phorbol 12-myristate 13-acetate (PMA) to produce superoxide and hydroxyl DEPMPO radical adducts. The formation of these adducts was inhibited by superoxide dismutase or diphenyleneiodonium chloride, indicating that these cells produced superoxide radical during reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. With the treatment of sodium sulfite, PMA-stimulated PP lymphocytes produced a DEPMPO-sulfite radical adduct and an unknown radical adduct. When DEPMPO was replaced with DMPO, DMPO-sulfite and hydroxyl radical adducts were detected. The latter adduct resulted from DMPO oxidation by sulfate radical, which was capable of oxidizing formate or ethanol. Oxygen consumption rates were further increased after the addition of sulfite to PMA-stimulated lymphocytes, suggesting the presence of sulfiteperoxyl radical. Taken together, oxidants generated by stimulated lymphocytes oxidized sulfite to sulfite radical, which subsequently formed sulfiteperoxyl and sulfate radicals. The latter two radicals are highly reactive, contributing to increased oxidative stress, which may lead to sulfite toxicity, altered functions in intestinal lymphocytes, or both.  相似文献   

2.
Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish between the carbon-centred, alkoxyl, and peroxyl radicals produced during the photolytic decomposition of hydroperoxides. Photolysis of tert-butyl and cumene hydroperoxides, and peroxidized fatty acids, in toluene, with low levels of u.v. light, is shown to lead to the initial production of alkoxyl radicals by homolysis of the oxygen-oxygen bond. Subsequent reaction of these radicals with excess hydroperoxide leads, by hydrogen abstraction, to the production of peroxyl radicals that can be detected as their corresponding adducts with the spin trap. Subsequent breakdown of these adducts produces alkoxyl radicals and a further species that is believed to be the oxidized spin-trap radical 5,5-dimethyl-1-pyrrolidone-2-oxyl. No evidence was obtained at low hydroperoxide concentrations, with either the cumene or lipid alkoxyl radicals, for the occurrence of beta-scission reactions; the production of low levels of carbon-centred radicals is believed to be due to the alternative reactions of hydrogen abstraction, ring closure, and/or 1,2 hydrogen shifts. Analogous experiments with 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO) led only to the trapping of alkoxyl radicals with no evidence for peroxyl radical adducts, this is presumably due to a decreased rate of radical addition because of increased steric hindrance.  相似文献   

3.
The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.  相似文献   

4.
5.
Plant plasma membranes are known to produce superoxide radicals, while the production of the hydroxyl radical, previously detected in complex plant tissues, is thought to occur in the cell wall. The mechanism of production of superoxide radicals by plant plasma membranes is, however, under dispute. It is shown, using electron paramagnetic resonance spectroscopy with a 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin-trap capable of differentiating between radical species, that isolated purified plasma membranes from maize roots produce hydroxyl radicals besides superoxide radicals. The results argue in favour of superoxide production through an oxygen and diphenylene iodonium-sensitive, NADH-dependent superoxide synthase mechanism, as well as through other unidentified mechanism(s). The hydroxyl radical is produced by an oxygen-insensitive, NADH-stimulated mechanism, which is enhanced in membranes in which the superoxide synthase is incapacitated by substrate removal or inhibition.  相似文献   

6.
The objective of this study was to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In this study sulfite (?SO3?) and sulfate (SO4??) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, phorbol 12-myristate 13-acetate-stimulated neutrophils produced DMPO–sulfite anion radical, –superoxide, and –hydroxyl radical adducts. The last adduct probably resulted, in part, from the conversion of DMPO–sulfate to DMPO–hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4??) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation.  相似文献   

7.
Sulfite (SO(3)(2-)) has been widely used as preservative and antimicrobial in preventing browning of foods and beverages. SO(2), a common air pollutant, also is capable of producing sulfite and bisulfite depending on the pH of solutions. A molybdenum-dependent mitochondrial enzyme, sulfite oxidase, oxidizes sulfite to inorganic sulfate and prevents its toxic effects. In the present study, sulfite toxicity towards isolated rat hepatocytes was markedly increased by partial inhibition of cytochrome a/a(3) by cyanide or by putting rats on a high-tungsten/low-molybdenum diet, which result in inactivation of sulfite oxidase. Sulfite cytotoxicity was accompanied by a rapid disappearance of GSSG followed by a slow depletion of reduced glutathione (GSH). Depleting hepatocyte GSH beforehand increased cytotoxicity of sulfite. On the other hand, dithiothreitol (DTT), a thiol reductant, added even 1h after the addition of sulfite to hepatocytes, prevented cell death and restored hepatocyte GSH levels. Sulfite cytotoxicity was also accompanied by an increase of oxygen uptake, reactive oxygen species (ROS) formation and lipid peroxidation. Cytochrome P450 inhibitors, metyrapone and piperonyl butoxide also prevented sulfite-induced cytotoxicity and lipid peroxidation. Desferroxamine and antioxidants also protected the cells against sulfite toxicity. These findings suggest that cytotoxicity of sulfite is mediated by free radicals as ROS formation increases by sulfite and antioxidants prevent its toxicity. Reaction of sulfite or its free radical metabolite with disulfide bonds of GSSG and GSH results in the compromise of GSH/GSSG antioxidant system leaving the cell susceptible to oxidative stress. Restoring GSH content of the cell or protein-SH groups by DTT can prevent sulfite cytotoxicity.  相似文献   

8.
The spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) forms a superoxide adduct with a half-life of almost 15 min. DEPMPO is very hydrophilic and its use for the detection of radicals in the lipid phase (lipid-derived radicals and superoxide generated in the lipid phase) is therefore limited due to its very low concentration in the lipid phase. For the detection of lipid-derived radicals, three derivatives of DEPMPO with increasing degree of lipid solubility have been investigated: 5-(di-n-propoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DPPMPO), 5-(di-n-butoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DBPMPO), and 5-(bis-(2-ethylhexyloxy)phosphoryl)-5-methyl-1-pyrroline N-oxide (DEHPMPO). As compared with the spin trap DMPO, the half-lives of the respective superoxide adducts were clearly higher in aqueous solutions of the spin traps, which facilitates qualitative ESR measurements. The stability of the superoxide spin adducts formed with the various lipophilic spin traps in aqueous buffer were similar to those observed with DEPMPO (half-life: 7-11 min.). In model experiments using Fe(3+)-catalyzed nucleophilic addition of methanol or tert-butanol to the respective spin trap the respective alkoxyl radical adducts were formed in aqueous solution as transient species in the presence of high concentrations of the alcohol. Upon dilution with water the alkoxyl group was substituted by water, giving the respective hydroxyl adduct of the spin trap. Care must therefore be taken when Fenton-type reactions are used for the generation of radicals such as the use of Fe(2+) complexes with phosphate or DTPA or inactivation of iron by addition of "Desferal" (Novarti's Pharma GmbH, Vienna, Austria) after a short incubation time. Addition of Fe(2+) under anaerobic conditions to an aqueous suspension of linoleic acid hydroperoxide and the spin trap resulted in the detection of three different species: a carbon-centered radical adduct, an acyl radical adduct, and the hydroxyl adduct. In the presence of oxygen a different species was observed with DEPMPO, DPPMPO, and DBPMPO, which was only slightly suppressed upon the addition of SOD, possibly the respective spin adduct of either the alkylperoxyl radical or, in analogy to DMPO, a secondary alkoxyl radical.  相似文献   

9.
Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.  相似文献   

10.
EPR spin trapping using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 3,5-dibromo-4-nitrosobenzene sulphonic acid (DBNBS) has been employed to examine the generation of radicals produced on reaction of a number of primary, secondary and lipid hydroperoxides with rat liver microsomal fractions in both the presence and absence of reducing equivalents. Two major mechanisms of radical generation have been elucidated. In the absence of NADPH or NADH, oxidative degradation of the hydroperoxide occurs to give initially a peroxyl radical which in the majority of cases can be detected as a spin adduct to DMPO; these radicals can undergo further reactions which result in the generation of alkoxyl and carbon-centered radicals. In the presence of NADPH (and to a lesser extent NADH) alkoxyl radicals are generated directly via reductive cleavage of the hydroperoxide. These alkoxyl radicals undergo further fragmentation and rearrangement reactions to give carbon-centered species which can be identified by trapping with DBNBS. The type of transformation that occurs is highly dependent on the structure of the alkoxyl radical with species arising from beta-scission, 1,2-hydrogen shifts and ring closure reactions being identified; these processes are in accord with previous chemical studies and are characteristic of alkoxyl radicals present in free solution. Studies using specific enzyme inhibitors and metal-ion chelators suggest that most of the radical generation occurs via a catalytic process involving haem proteins and in particular cytochrome P-450. An unusual species (an acyl radical) is observed with lipid hydroperoxides; this is believed to arise via a cage reaction after beta-scission of an initial alkoxyl radical.  相似文献   

11.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

12.
We report in vivo evidence for fatty acid-derived free radical metabolite formation in bile of rats dosed with spin traps and oxidized polyunsaturated fatty acids (PUFA). When rats were dosed with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and oxidized PUFA, the DMPO thiyl radical adduct was formed due to a reaction between oxidized PUFA and/or its metabolites with biliary glutathione. In vitro experiments were performed to determine the conditions necessary for the elimination of radical adduct formation by ex vivo reactions. Fatty acid-derived radical adducts of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) were detected in vivo in bile samples collected into a mixture of iodoacetamide, desferrioxamine, and glutathione peroxidase. Upon the administration of oxidized 13C-algal fatty acids and 4-POBN, the EPR spectrum of the radical adducts present in the bile exhibited hyperfine couplings due to 13C. Our data demonstrate that the carbon-centered radical adducts observed in in vivo experiments are unequivocally derived from oxidized PUFA. This in vivo evidence for PUFA-derived free radical formation supports the proposal that processes involving free radicals may be the molecular basis for the previously described cytotoxicity of dietary oxidized PUFA.  相似文献   

13.
Previous experiments in rats with chemically induced colitis have shown that the antioxidant N-acetylcysteine plus mesalamine (5-ASA) exerted a significantly greater therapeutic effect in promoting mucosal healing when compared to either agent alone. The aims of the present study were to compare the effects of three antioxidants plus mesalamine vs. 5-ASA alone in treatment of colitis induced by trinitrobenzene sulfonic acid (TNBS) in rats. Methods: Three days following induction of TNBS colitis, rats received 8 days of rectal therapy with 5-ASA, or 5-ASA plus vitamin C (ascorbic acid), 5-ASA plus phenyl butylnitrone (PBN) and 5-ASA plus vitamin E (alpha-tocopherol). Distal colonic tissues were examined for microscopic colitis and myeloperoxidase (MPO) activity. Results: Global assessments of microscopic colitis induced by TNBS indicated that 5-ASA alone significantly changed colonic injury by -31%. Combination therapy with ascorbic acid plus 5-ASA or alpha-tocopherol plus 5-ASA caused further significant change in TNBS colitis by -65 and -82%, respectively. Each of these values was significantly below scores observed with 5-ASA as monotherapy. Reduction in colitis with PBN plus 5-ASA was not different from 5-ASA alone. MPO activity was decreased significantly in response to monotherapy with 5-ASA and each of the antioxidants plus 5-ASA when compared to TNBS. alpha-Tocopherol plus 5-ASA, however, was the only treatment strategy that reduced significantly MPO activity below that recorded for 5-ASA alone. In conclusion, our results indicate that antioxidants other than N-acetylcysteine significantly enhance the therapeutic effectiveness of 5-ASA in the treatment of TNBS colitis. alpha-Tocopherol plus 5-ASA exerted profound anti-inflammatory and reparative effects upon colitis induced by TNBS.  相似文献   

14.
Gastrointestinal inflammation has been associated with an increased generation of nitric oxide (NO) and the expression of the inducible NO synthase (iNOS). Using an experimental model of colitis induced by trinitrobenzene sulphonic acid (TNBS), we sought to determine whether the administration of N-(3-(Aminomethyl)benzyl)acetamidine (1400W), a specific inhibitor of iNOS, has a beneficial action on the colonic injury. 1400W (0.4 and 2 mg/kg/day) was administered intraperitoneally from day 5 to 10 after intrarectal instillation of TNBS. TNBS led to colonic ulceration and inflammation, an increase of colonic myeloperoxidase activity and the expression of the calcium-independent NOS from days 1 to 15. 1400W reduced the macroscopic damage and the histological changes induced by TNBS as well as the calcium-independent NOS activity and myeloperoxidase activity determined over 30 min after sacrifice. These findings indicate that the expression of iNOS accounts for most of the damage caused by TNBS and that the administration of 1400W after the onset of colitis has a beneficial action on the colonic injury.  相似文献   

15.
The o-, m-, and p-nitrobenzyl chlorides are reduced aerobically and anaerobically by NADPH and rat hepatic microsomes. Under aerobic conditions, these nitro anion radicals reduce oxygen to superoxide as demonstrated by oxygen consumption and spin trapping of superoxide with 5,5-dimethyl-1-pyrroline N-oxide. At low oxygen concentration, the p- and o-nitro anion radicals undergo intramolecular electron transfer and decompose to carbon-centered nitrobenzyl radicals, which can be spin-trapped with t-nitrosobutane. The p-nitrobenzyl (o-nitrobenzyl) radical adduct was characterized by a nitrogen hyperfine splitting of 16.5 G (17.1 G) and two equivalent beta-hydrogen hyperfine splittings of 10.6 G (14.4 G). The spin trap 5,5-dimethyl-1-pyrroline N-oxide also yields adducts characteristic of carbon-centered free radicals. This unimolecular decomposition is much faster than the disproportionation decay, which is characteristic of most nitro anion radicals, and the primary o- and p-nitrobenzyl chloride anion radicals never achieve detectable concentrations. The nitrobenzyl radical trapping is not inhibited by metyrapone or CO. In contrast, the m-nitrobenzyl anion radical does achieve a detectable steady-state concentration, which is increased 20% by either metyrapone or a CO atmosphere.  相似文献   

16.
The detection of protein free radicals using the specific free radical reactivity of nitrone spin traps in conjunction with nitrone-antibody sensitivity and specificity greatly expands the utility of the spin trapping technique, which is no longer dependent on the quantum mechanical electron spin resonance (ESR). The specificity of the reactions of nitrone spin traps with free radicals has already made spin trapping with ESR detection the most universal, specific tool for the detection of free radicals in biological systems. Now the development of an immunoassay for the nitrone adducts of protein radicals brings the power of immunological techniques to bear on free radical biology. Polyclonal antibodies have now been developed that bind to protein adducts of the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In initial studies, anti-DMPO was used to detect DMPO protein adducts produced on myoglobin and hemoglobin resulting from self-peroxidation by H2O2. These investigations demonstrated that myoglobin forms the predominant detectable protein radical in rat heart supernatant, and hemoglobin radicals form inside red blood cells. In time, all of the immunological techniques based on antibody-nitrone binding should become available for free radical detection in a wide variety of biological systems.  相似文献   

17.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 microM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O(2), H(2)O(2), and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O(2)(-.).  相似文献   

18.
A novel cyclic nitrone spin trap, 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) as a pure white solid has been synthesized for the first time. BMPO offers several advantages over the existing spin traps in the detection and characterization of thiyl radicals, hydroxyl radicals, and superoxide anions in biological systems. The corresponding BMPO adducts exhibit distinct and characteristic electron spin resonance (ESR) spectral patterns. Unlike the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-derived superoxide adduct, the BMPO superoxide adduct does not non-enzymatically decompose to the BMPO hydroxyl adduct. This feature is clearly perceived as a definite advantage of BMPO in its biological applications. In addition, the ESR spectrum of the BMPO glutathionyl adduct (BMPO/*SG) does not fully overlap with the spectrum of its hydroxyl adduct. This spectral feature is again distinctly different from that of DMPO because the ESR spectral lines of DMPO glutathionyl and hydroxyl radical adducts largely overlap. Finally, the ESR spectra of BMPO-derived adducts exhibit a much higher signal-to-noise ratio in biological systems. These favorable chemical and spectroscopic features make BMPO ideal for the detection of superoxide anions, hydroxyl and thiyl radicals in biochemical oxidation and reduction.  相似文献   

19.
Peroxynitrite, which is formed by the fast reaction between nitric oxide and superoxide anion, has been receiving increasing attention as a mediator of human diseases. An initial controversy about the possibility of free radical production from peroxynitrite in test tubes has been resolved, and presently it is important to establish whether peroxynitrite produces radicals in cells. Here we employed the EPR spin trapping methodology with 5,5-dimethylpyrroline N-oxide (DMPO) to study the interaction of peroxynitrite with human erythrocytes. The results confirmed previous findings in demonstrating that oxyhemoglobin is the main target of peroxynitrite in erythrocytes. As we first show here, the produced ferryl-hemoglobin oxidizes its own amino acids and, most probably, amino acids from other hemoglobin monomers to produce hemoglobin-tyrosyl and hemoglobin-cysteinyl radicals. In parallel, ferryl-hemoglobin also oxidizes intracellular glutathione to produce the glutathiyl radical. The EPR spectrum of both DMPO/(*)cysteinyl-hemoglobin (a(beta)(H) = 15.4 G) and DMPO/(*)tyrosyl-hemoglobin (a(beta)(H) = 8.8 G) radical adducts was characterized. It is proposed that erythrocytes can be efficient peroxynitrite scavengers in vivo through the coupled action of oxyhemoglobin and glutathione. Overall, the results indicate that, through the intermediacy of carbon dioxide and/or hemoproteins, oxidation of glutathione to the glutathiyl radical is likely to be an important consequence of peroxynitrite production in vivo.  相似文献   

20.
5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) is frequently used as a spin trap for the measurement of superoxide by EPR spectrometry. However, its half life is fairly short in room temperature. We here show that superoxide radicals trapped by DEPMPO can be successfully recorded at -196 degrees C. Moreover, we show that the signal intensity remains unaltered for up to 7 days, when the samples are stored in liquid nitrogen. Our new approach for measurement of superoxide should greatly simplify the studies of this important radical in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号