首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

2.
The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped as it comes further away from the perturbed trophic level. Fishing on several trophic levels leads to a disappearance of the signature of the trophic cascade. Differences in fishing patterns among ecosystems might influence whether a trophic cascade is observed.  相似文献   

3.
Climate fluctuations and human exploitation are causing global changes in nutrient enrichment of terrestrial and aquatic ecosystems and declining abundances of apex predators. The resulting trophic cascades have had profound effects on food webs, leading to significant economic and societal consequences. However, the strength of cascades–that is the extent to which a disturbance is diminished as it propagates through a food web–varies widely between ecosystems, and there is no formal theory as to why this should be so. Some food chain models reproduce cascade effects seen in nature, but to what extent is this dependent on their formulation? We show that inclusion of processes represented mathematically as density‐dependent regulation of either consumer uptake or mortality rates is necessary for the generation of realistic ‘top‐down’ cascades in simple food chain models. Realistically modelled ‘bottom‐up’ cascades, caused by changing nutrient input, are also dependent on the inclusion of density dependence, but especially on mortality regulation as a caricature of, e.g. disease and parasite dynamics or intraguild predation. We show that our conclusions, based on simple food chains, transfer to a more complex marine food web model in which cascades are induced by varying river nutrient inputs or fish harvesting rates.  相似文献   

4.
Prey-dependent models, with the predation rate (per predator) a function of prey numbers alone, predict the existence of a trophic cascade. In a trophic cascade, the addition of a top predator to a two-level food chain to make a three-level food chain will lead to increases in the population size of the primary producers, and the addition of nutrients to three-level chains will lead to increases in the population numbers at only the first and third trophic levels. In contrast, ratio-dependent models, with the predation rate (per predator) dependent on the ratio of predator numbers to prey, predict that additions of top predators will not increase the population sizes of the primary producers, and that the addition of nutrients to a three-level food chain will lead to increases in population numbers at all trophic levels. Surprisingly, recent meta-analyses show that freshwater pelagic food web patterns match neither prey-dependent models (in pelagic webs, ''prey'' are phytoplankton, and ''predators'' are zooplankton), nor ratio-dependent models. In this paper we use a modification of the prey-dependent model, incorporating strong interference within the zooplankton trophic level, that does yield patterns matching those found in nature. This zooplankton interference model corresponds to a more reticulate food web than in the linear, prey-dependent model, which lacks zooplankton interference. We thus reconcile data with a new model, and make the testable prediction that the strength of trophic cascades will depend on the degree of heterogeneity in the zooplankton level of the food chain.  相似文献   

5.
A cross-ecosystem comparison of the strength of trophic cascades   总被引:11,自引:4,他引:7  
Although trophic cascades (indirect effects of predators on plants via herbivores) occur in a wide variety of food webs, the magnitudes of their effects are often quite variable. We compared the responses of herbivore and plant communities to predator manipulations in 102 field experiments in six different ecosystems: lentic (lake and pond), marine, and stream benthos, lentic and marine plankton, and terrestrial (grasslands and agricultural fields). Predator effects varied considerably among systems and were strongest in lentic and marine benthos and weakest in marine plankton and terrestrial food webs. Predator effects on herbivores were generally larger and more variable than on plants, suggesting that cascades often become attenuated at the plant–herbivore interface. Top‐down control of plant biomass was stronger in water than on land; however, the differences among the five aquatic food webs were as great as those between wet and dry systems.  相似文献   

6.
Leahy  Susannah M.  Robins  Julie B. 《Hydrobiologia》2021,848(18):4311-4333
Hydrobiologia - Freshwater is a critical input to estuaries but is under increasing demand to support upstream human activities. In this study, otolith biochronology was used to quantify the...  相似文献   

7.
Subsidy hypothesis and strength of trophic cascades across ecosystems   总被引:1,自引:0,他引:1  
Leroux SJ  Loreau M 《Ecology letters》2008,11(11):1147-1156
Ecosystems are differentially open to subsidies of energy, material and organisms. This fundamental ecosystem attribute has long been recognized but the influence of this property on community regulation has not been investigated. We propose that this environmental attribute may explain variation in the strength of trophic cascades among ecosystems. Simply because of gravity, we should predict that systems with convex profiles receive low amounts of subsidies whereas systems with concave profiles act as spatial attractors, and receive high amounts of subsidies. The subsidy hypothesis states that ecosystems with high amounts of allochthonous inputs will experience the strongest trophic cascades. To test this hypothesis, we derive ecosystem models and investigate the effect of location and magnitude of subsidies on the strength of trophic cascades. Predictions from our models support the subsidy hypothesis and highlight the need to consider ecosystems as open to allochthonous flows.  相似文献   

8.
In contrast to top-down trophic cascades, few reviews have appeared of bottom-up trophic cascades. We review the recent development of research on bottom-up cascades in terrestrial food webs, focusing on tritrophic systems consisting of plants, herbivorous insects, and natural enemies, and attempt to integrate bottom-up cascade and material transfer among trophic levels. Bottom-up cascades are frequently reported in various tritrophic systems, and are important to determine community structure, population dynamics, and individual performance of higher trophic levels. In addition, we highlight several features of bottom-up cascades. Accumulation or dilution of plant nutritional and defensive materials by herbivorous insects provides a mechanistic base for several bottom-up cascades. Such a stoichiometric approach has the potential to improve our understanding of bottom-up cascading effects in terrestrial food webs. We suggest a future direction for research by integration of bottom-up cascades and material transfer among trophic levels.  相似文献   

9.
Although human-mediated extinctions disproportionately affect higher trophic levels, the ecosystem consequences of declining diversity are best known for plants and herbivores. We combined field surveys and experimental manipulations to examine the consequences of changing predator diversity for trophic cascades in kelp forests. In field surveys we found that predator diversity was negatively correlated with herbivore abundance and positively correlated with kelp abundance. To assess whether this relationship was causal, we manipulated predator richness in kelp mesocosms, and found that decreasing predator richness increased herbivore grazing, leading to a decrease in the biomass of the giant kelp Macrocystis. The presence of different predators caused different herbivores to alter their behaviour by reducing grazing, such that total grazing was lowest at highest predator diversity. Our results suggest that declining predator diversity can have cascading effects on community structure by reducing the abundance of key habitat-providing species.  相似文献   

10.
Trophic cascades are extensively documented in nature, but they are also known to vary widely in strength and frequency across ecosystems. Therefore, much effort has gone into understanding which ecological factors generate variation in cascade strength. To identify which factors covary with the strength of cascades in streams, we performed a concurrent experiment across 17 streams throughout the Sierra Nevada Mountains. We eliminated top consumers from experimental substrates using electrical exclusions and compared the strength of indirect effects of consumers on the biomass of primary producers relative to control patches. In each stream we 1) classified the dominant invertebrate herbivores according to life‐history traits that influence their susceptibility to predators, 2) determined the abundance and diversity of algae and herbivores, and 3) measured production‐to‐biomass ratios (P:B) of the stream biofilm. This allowed us to assess three common predictions about factors thought to influence the strength of trophic cascades: cascade strength 1) is weaker in systems dominated by herbivores with greater ability to evade or defend against predators, 2) is stronger in systems characterized by low species diversity, and 3) increases with increasing producer P:B. When averaged across all streams, the indirect effect of predators increased the biomass of periphyton by a mean 60%. However, impacts of predators on algae varied widely, ranging from effects that exacerbated algal loss to herbivores, to strong cascades that increased algal biomass by 4.35 times. Cascade strength was not related to herbivore traits or species diversity, but decreased significantly with increasing algal diversity and biofilm P:B in a stream. Partial regression analyses suggested that the relationship between cascade strength and algal diversity was spurious, and that the only significant covariate after statistically controlling for cross‐correlations was algal P:B. Our study contributes to the ongoing debate about why trophic cascade strength varies in nature and is useful because it eliminates factors that have no potential to explain variation in cascades within these stream ecosystems.  相似文献   

11.
Understanding the relative effect of top predators and primary producers on intermediate trophic levels is a key question in ecology. Most previous work, however, has not considered either realistic nonlinearities in feedback between trophic levels or the effect of mutualists on trophic cascades. Here, we develop a realistic model for a protection mutualism that explicitly includes interactions between a protected herbivore and both its food plant and generalist predators. In the absence of protection, herbivores and plant resources approach a stable equilibrium, provided that predation is not so high as to cause herbivore extinction. In contrast, adding protection by mutualists increases the range of dynamical outcomes to include unstable equilibria, stable and unstable limit cycles, and heteroclinic orbits. By reducing the impact of predators, protection by mutualists can allow herbivores to exert strong negative effects on their host plants, which in turn can lead to repeated cycles of overexploitation and recovery. Our results indicate that it may be essential to consider protection mutualisms to understand the dynamics of trophic cascades. Conversely, it may be essential to explicitly include dynamical feedback between plants and herbivores to fully understand the population and community dynamical consequences of protection mutualism.  相似文献   

12.
Ecological communities are assembled and sustained by colonisation. At the same time, predators make foraging decisions based on the local availabilities of potential resources, which reflects colonisation. We combined field and laboratory experiments with mathematical models to demonstrate that a feedback between these two processes determines emergent patterns in community structure. Namely, our results show that prey colonisation rate determines the strength of trophic cascades – a feature of virtually all ecosystems – by prompting behavioural shifts in adaptively foraging omnivorous fish predators. Communities experiencing higher colonisation rates were characterised by higher invertebrate prey and lower producer biomasses. Consequently, fish functioned as predators when colonisation rate was high, but as herbivores when colonisation rate was low. Human land use is changing habitat connectivity worldwide. A deeper quantitative understanding of how spatial processes modify individual behaviour, and how this scales to the community level, will be required to predict ecosystem responses to these changes.  相似文献   

13.
As a vital tool for the conservation of species at risk, translocations are also opportunities to identify factors that influence translocation success. We evaluated factors associated with post-release survival of 90 radio-tracked fishers (Pekania pennanti) translocated from central British Columbia, Canada, to the Olympic Peninsula of Washington, USA, from 2008 to 2011. We hypothesized that the survival of translocated fishers would be affected by the same factors that influence the survival of resident, native fishers (i.e., sex, age, season, body condition), and additional factors that were associated with the translocation process (e.g., duration of captivity, release date, yr of release). Fisher survival was most strongly influenced by translocation year (i.e., release-yr cohort), season, sex, and age class of fisher; whereas duration of captivity, standardized body mass, release date, and number of intact canines did not influence survival. Survival was lowest for fishers released in cohort 2 in 2009 and during the breeding season (Mar–Jun), and was greatest for juveniles and males. When combined across release-year cohorts, year 1 survival rates were greatest for juvenile males followed by juvenile females, adult females, and adult males. Sex and age-related differences in survival of translocated fishers were counter to those commonly reported for established fisher populations, where adult females often have the highest survival rates and juveniles the lowest. Predation (40%) and vehicle strikes (20%) were the most common causes of known mortality among the 24 recovered fishers for which cause of death was determined. We speculate that females face higher risks of mortality in translocated populations because their small size makes them more vulnerable to predation and because adult females in resident populations are less likely than males and juveniles to disperse. Our findings support designing translocations that favor releasing a preponderance of female fishers in recognition of their lower survival rates and to ensure adequate breeders are established in the population, and juvenile and young adult fishers to enhance survival of both sexes. Releases conducted over multiple years will minimize the impact of stochastic annual events that may adversely affect survival in any given year. Persistence, widespread distribution, and documented reproduction of fishers within our study area for ≥6 years following the last releases indicate that survival parameters we measured contributed toward successful population establishment over the short term.  相似文献   

14.
Predation on mutualists can reduce the strength of trophic cascades   总被引:1,自引:0,他引:1  
Ecologists have put forth several mechanisms to predict the strength of predator effects on producers (a trophic cascade). We suggest a novel mechanism – in systems in which mutualists of plants are present and important, predators can have indirect negative effects on producers through their consumption of mutualists. The strength of predator effects on producers will depend on their relative consumption of mutualists and antagonists, and on the relative importance of each to producer population dynamics. In a meta-analysis of experiments that examine the effects of predator reduction on the pollination and reproductive success of plants, we found that the indirect negative effects of predators on plants are quite strong. Most predator removal experiments measure the strength of predator effects on producers through the antagonist pathway; we suggest that a more complete understanding of the role of predators will be achieved by simultaneously considering the effects of predators on plant mutualists.  相似文献   

15.
Trophic cascades occur when predators benefit plants by consuming herbivores, but the overall strength of a trophic cascade depends upon the way species interactions propagate through a system. For example, plant resistance to, or tolerance of, herbivores reduces the potential magnitude of a trophic cascade. At the same time, plants can also affect predator foraging or consumption in ways that either increase or decrease the strength of trophic cascades. In this study, we investigated the effects of plant variation on cascade strength by manipulating predator access to aphid populations on two species of milkweed: the slower-growing, putatively more-defended Asclepias syriaca and the faster-growing, putatively less-defended Asclepias incarnata. Predatory insects increased plant growth and survival for both species, but the strength of these trophic cascades was greater on A. incarnata, which supported more aphid growth early in the season than did A. syriaca. More predators were observed per aphid on A. incarnata, and cage treatments generated significant patterns consistent with predator aggregation on A. incarnata, but not A. syriaca. Although predators strongly affected aphids, this effect did not differ consistently between milkweed species. Plant tolerance to herbivory may therefore be the primary driver of the difference in trophic cascade strength observed. Importantly, we observed that the timing of predator exclusion affected plant growth and survival differently, indicating that measures of “cascade strength” may change with phenology and plant physiological responses. Together, our results suggest a mechanism by which differences in resource allocation patterns could explain differences in growth, phenology, and cascade strength between species.  相似文献   

16.
We manipulated the diversity of top predators in a three trophic level marine food web. The food web included four top benthic marine fish predators (black goby, rock goby, sea scorpion and shore rockling), an intermediate trophic level of small fish, and a lower trophic level of benthic invertebrates. We kept predator density constant and monitored the response of the lower trophic levels. As top predator diversity increased, secondary production increased. We also observed that in the presence of the manipulated fish predators, the density of small gobiid fish (intermediate consumers) was suppressed, releasing certain groups of benthic invertebrates (caprellid amphipods, copepods, nematodes and spirorbid worms) from heavy intermediate predation pressure. We attribute the mechanism responsible for this trophic cascade to a trait-mediated indirect interaction, with the small gobiid fish changing their use of space in response to altered predator diversity. In the absence of top fish predators, a full-blown trophic cascade occurs. Therefore the diversity of predators reduces the likelihood of trophic cascades occurring and hence provides insurance against the loss of an important ecosystem function (i.e. secondary production).  相似文献   

17.
We provide evidence for a trophic cascade involving apex predators and mesopredators of marine temperate reefs, lingcod and rockfish, respectively. We measured spatio-temporal variation in the relative abundance of lingcod, subadult rockfish and two shrimp groups eaten by rockfish (Pandalus sp. and three smaller-bodied genera aggregated). Lingcod had an indirect positive effect on shrimps, as mediated by the direct negative effects of lingcod on rockfish and of rockfish on shrimps. These top-down effects on shrimps, however, were stronger for Pandalus than for small-bodied shrimps. Further, abundances of Pandalus and small-bodied shrimps were negatively correlated and the latter had a stronger positive effect on rockfish, suggesting that rockfish mediated asymmetrical apparent competition between shrimps. Our results indicate mechanisms by which predatory fishes may influence the structure of marine communities.  相似文献   

18.
19.
We investigated the diet of the southern cassowary (Casuarius casuarius) by identifying the seeds and fruits in fecal droppings encountered on a set of transects over 2 yr in upland rain forest in the wet tropics of North Queensland. A total of 198 droppings containing 56 plant species were found. We surveyed fleshy fruit availability over the subsequent 68 mo on transects in the same area to ascertain fruiting patterns in the study area. The number of droppings found each month did not correspond to the pattern of available fruit biomass. There was no relationship between the fruit traits of moisture content, flesh to seed mass ratio, color, or crop size to contribution of a species to the diet. During the lean fruiting season (May–July) cassowaries relied more on species that fruited continuously throughout the year as they were significantly over‐represented in droppings, while annual fruiting species were under‐represented. During months of high fruit availability (October–December), continuously fruiting species were still over‐represented in the diet but became less important while annual and biennial species became more important. Significantly more species with large fruit and large seeds appeared in the diet than expected and we confirm that the cassowary contributes to the continued dispersal of these species over long distances and in large quantities.  相似文献   

20.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号