首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of hydration and water self diffusion in lamellar phases of the ternary system: phosphatidylcholine/cholesterol/water have been made using pulse NMR relaxation methods. Systems containing phosphatidylcholine and cholesterol in a 1 : 1 mol ratio with varying water contents are studied at 20.5°C. The results indicate that 12 water molecules corresponds to complete hydration of the phosphatidylcholine/cholesterol unit, and in the region of this hydration a 4-fold decrease in water diffusion occurs. The nature of the bound water and its relationship to phase stability and overall water mobility in the system are discussed. It is concluded that at the stoichiometric composition the diffusion decreases due to the relative immobility of the bound water. The implications in terms of permeability regulation in the aqueous channels by water content and hydration are cited.  相似文献   

2.
The hydration characteristics of phosphatidylcholines and the effect of cholesterol on these were studied with differential thermal analysis and water vapour adsorption experiments. Also the water adsorption of egg phosphatidylethanolamine and the effect of cholesterol on this was studied and compared with corresponding qualities of phosphatidylcholine.The differential thermal analysis study showed that the monohydrates of egg, dipalmitoyl, and dioleoyl phosphatidylcholine tightly bind ~9 molecules of water per phosphatidylcholine molecule. Cholesterol is proved to somewhat increase the water binding of the phospholipids. Cholesterol is also shown to decrease the heat change of the chain melting transition of dioleoyl phosphatidylcholine, but not to abolish it completely.The water adsorption experiments indicate that the hydration of phosphatidylcholines takes place in two steps; a strong initial water binding and a second phase of weak binding. The adsorption isotherm of egg phosphatidylethanolamine is strikingly different from that of egg phosphatidylcholine. Cholesterol is shown, also by this method, to increase the hydration of phospholipids especially that of dipalmitoylphosphatidylcholine.The results in this study are in good agreement with those presented by many other authors. Starting with the accumulated information of the hydration characteristics of phosphatidylcholines the organization of the bound water around the polar group is discussed and the most probable model is evaluated.  相似文献   

3.
A pulsed field gradient NMR was used to study lateral diffusion in the cholesterol-containing oriented bilayers of saturated (dipalmitoyl- and dimyristoyl-) phosphatidylcholines, upon their limiting hydration. Similar dependences of lateral diffusion coefficients on temperature and cholesterol concentration were observed, which agree with phase diagram showing the presence of the regions of disordered and ordered liquid-crystalline phases and a two-phase region. Under the same conditions, the lateral diffusion coefficient of dipalmitoylphosphatidylcholine is lower, which agrees qualitatively with its larger molecular weight. The comparison of data for dipalmitoylphosphatidylcholine with previous results for dipalmitoylsphingomyelin-cholesterol bilayers under the same conditions, in spite of similarity of phase diagrams, shows large (two–three times) differences in the lateral diffusion coefficient and a different profile of its dependence on cholesterol concentration. The comparison of data for dimyristoylphosphatidylcholine with previous results shows that the values of lateral diffusion coefficient and the shape of its dependence on cholesterol concentration coincide at high concentrations (>15 mol%) but differ at lower concentrations The revealed disagreement may be caused by the fact that the measurements were carried out at different water content in the system. At limiting hydration (more than 35% of water), the lateral diffusion coefficient for lipids decreases when cholesterol concentration rises, while at water content about 25% (as a result of equilibrium hydration from vapors) the lateral diffusion coefficient of phosphatidylcholine may be independent of cholesterol concentration. This is the consequence of the denser packing of molecules in the bilayer at reduced water content, an effect that competes with the ordering effect of cholesterol.  相似文献   

4.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

5.
Lateral diffusion in oriented bilayers of saturated cholesterol-containing phosphatidylcholines, dipalmitoylphosphatidylcholine and dimyrilstoylphosphatidylcholine upon their limiting hydration has been studied by NMR with impulse gradient of magnetic field. For both systems, similar dependences of the coefficient of lateral diffusion on temperature and cholesterol concentration were observed, which agree with the phase diagram showing the presence of regions of ordered and unordered liquid-crystalline phases and a two-phase region. Under similar conditions, the coefficient of lateral diffusion for dipalmytoylphosphatidylcholine has lower values, which is in qualitative agreement with its greater molecular mass. A comparison of data for dipalmytoylphosphatidylcholine with the results obtained earlier for dipalmytoylsphyngomyelin/cholesterol under the same conditions shows, despite a similarity in phase diagrams, greater (two- to threefold) differences in the values of the coefficient of lateral diffusion and a different mode of dependence of the coefficient on cholesterol concentration. A comparison of data for dimyrilstoylphosphatidylcholine with the results obtained previously shows that the values of the coefficient of lateral diffusion and the mode of its dependence on cholesterol concentration coincide in the region of higher concentrations (more than 15 mole %) and differ in the region of lower concentrations (below 15 mole %). The discrepancies may be explained by different contents of water in the systems during the measurements. At a limiting hydration (more than 35%) of water, the coefficient of lateral diffusion decreases with increasing cholesterol concentration. If the content of water is about 25% (as a result of equilibrium hydration from vapors), the coefficient of lateral diffusion of phosphatidylcholine is probably independent of cholesterol concentration. This results from a denser packing of molecules in the bilayer at a lower water concentration, an effect that competes with the ordering effect of cholesterol.  相似文献   

6.
X-ray diffraction studies have been made on the effects of cations upon the dipalmitoyl phosphatidylcholine/water system, which originally consists of a lamellar phase with period of 64.5 A and of excess water. Addition of 1 mM CaCl2 destroys the lamellar structure and makes it swell into the excess water. The lamellar phase, however, reappears when the concentration of CaCl2 increases: a partially disordered lamellar phase with the repeat distance of 150-200 A comes out at the concentration of about 10 mM, the lamellar diffraction lines become sharp and the repeat distance decreases with increasing CaCl2 concentration. A small amount of uranyl acetate destroys the lameellar phase in pure water. MgCl2 induces the lamellar phase of large repeat distance, whereas LiCl, NaCl, KCl, SrCl2 and BaCl2 exhibit practically no effect by themselves. Addition of cholesterol to the phosphatidylcholine bilayers tends to stabilize the lamellar phase. The high-angle reflections indicate that molecular arrangements in phosphatidylcholine bilayers change at CaCl2 concentrations around 0.5 M. The bilayers at high CaCl2 concentration seem to consist of two phases of pure phosphatidylcholine and of equimolar mixture of phosphatidylcholine and cholesterol.  相似文献   

7.
C H Hsieh  W G Wu 《Biophysical journal》1996,71(6):3278-3287
Deuterium NMR relaxation and intensity measurements of the 2H-labeled H2O/dimyristoyl phosphatidylcholine bilayer were performed to understand the molecular origin of the freezing event of phospholipid headgroup and the structure and dynamics of unfrozen water molecules in the interbilayer space at subzero temperatures. The results suggest that about one to two water molecules associated with the phosphate group freeze during the freezing event of phospholipid headgroups, whereas about five to six waters near the trimethylammonium group behave as a water cluster and remain unfrozen at temperatures as low as -70 degrees C. In addition, temperature-dependent T1 and T2 relaxation times suggest that dynamic coupling occurs not only between the phosphate group and its bound water, but also between the methyl group and the adjacent water molecules. Based on these observations, the primary hydration shell of phosphatidylcholine headgroup at subzero temperatures is suggested to consist of two distinct regions: a clathrate-like water cluster, most likely a water pentamer, near the hydrophobic methyl group, and hydration water molecules associated with the phosphate group.  相似文献   

8.
The nuclear magnetic resonance signal of water which remains unfrozen at ?25 °C in the presence of phosphatidylcholine has been used to determine the hydration of this amphiphile. The effects of cholesterol and sodium dodecylsulfate on both the area and linewidth of this signal indicate that these molecules cause significant changes in the structure of phosphatidylcholine vesicles in solution. Studies on other amphiphiles indicate that, whereas phosphatidylethanolamine has a hydration similar to phosphatidylcholine, species with just one hydrocarbon chain such as sodium dodecylsulfate and dodecyltrimethylammonium bromide have little, if any, hydration when assayed via the nuclear magnetic resonance experiment.  相似文献   

9.
X-ray diffraction studies have been made on the effects of cations upon the dipamitoyl phosphatidylcholine/water system, which originally consists of a lamellar phase with period of 64.5 Å and of excess water. Addition of 1 mM CaCl2 destroys the lamellar structure and makes it swell into the excess water. the lamellar phase, however, reappears when the concentration of CaCl2 increases: a partially disordered lamellar phase with the repeat distance of 150–200 Å comes out at the concentration of about 10 mM, the lamellar diffraction lines become sharp and the repeat distance decreases with increasing CaCl2 concentration. A small amount of uranyl acetate destroys lamellar phase in pure water. MgCl2 induces the lamellar phase of large repeat distance, whereas LiCl, NaCl, KCl, SrCl2 and BaCl2 exhibit practically no effect by themselves. Addition of cholesterol to the phosphatidylcholine bilayers tends to stabilize the lamellar phaseThe high-angle reflections indicate that molecular arrangements on phosphatidylcholine bilayers change at CaCl2 concentrations around 0.5 M. The bilayers at high CaCl2 concentration seem to consist of two phases of pure phosphatidylcholine and of equimolar mixture of phosphatidylcholine and cholesterol.  相似文献   

10.
Interfacial tension of an egg lecithin-cholesterol system was measured across the whole concentration range. Surface pressure-area isotherm measurements were carried out in a Langmuir trough at the air/water interface at room temperature (22 degrees C). The interfacial tension of the air/water interface was divided into contributions of components. The interfacial tension of a 1:1 complex between phosphatidylcholine and cholesterol was calculated. Its value equals 18 mN/m. The difference between the stability constant of 1:1 complex in the bilayer and the monolayer at the air/water interface is discussed.  相似文献   

11.
Pressure versus fluid spacing relations have been obtained for sphingomyelin bilayers in the gel phase and equimolar sphingomyelin/cholesterol in the liquid-crystalline phase by the use of X-ray diffraction analysis of osmotically stressed aqueous dispersions and oriented multilayers. For interbilayer separations in the range of 5-20 A, the repulsive hydration pressure decays exponentially with increasing fluid spacing. The decay length (lambda) of this repulsive pressure is about 2 A for both bovine brain and N-tetracosanoylsphingomyelin, similar to that previously found for phosphatidylcholine bilayers. However, both the magnitude of the hydration pressure and the magnitude of the dipole potential (V) measured for monolayers in equilibrium with liposomes are considerably smaller for sphingomyelin than for either gel or liquid-crystalline phosphatidylcholine bilayers. Addition of equimolar cholesterol increases both the magnitude of the hydration pressure and the dipole potential. These data suggest that the magnitude of the hydration pressure depends on the electric field at the interface as given by (V/lambda)2. For sphingomyelin bilayers, there is a sharp upward break in the pressure-fluid spacing relation at an interbilayer spacing of about 5 A, indicating the onset of steric hindrance between the head groups of apposing bilayers.  相似文献   

12.
Liposomes composed of egg phosphatidylcholine (EPC) (13.4%, of the acyl chains being polyunsaturated fatty acids (PUFA)) and EPC/cholesterol (10:1 mol/mol) were studied for factors that affect liposomal lipid oxidative damage and hydrolysis upon long-term (16 months) storage. Factors studied include: (1) levels of lipid/water interface hydration, related to the presence of cholesterol in the lipid bilayer; (2) the membrane-associated antioxidant vitamin E; (3) the water-soluble antioxidant Tempol; and (4) exposure to light. Liposomal dispersions were stored at room temperature, either exposed to or protected from daylight, for a period of 16 months. Chemical and physical changes were monitored at several time points to assess oxidative and hydrolytic degradation of liposomal lipids. The conclusions of the study are: (1) PUFA are the most sensitive component of the liposome bilayer to oxidative degradation damage during long-term storage; (2) EPC liposomes are more sensitive to degradation during storage than EPC cholesterol liposomes, the presence of cholesterol in the lipid bilayer having a protective effect, probably due to its effect in decreasing the lipid-bilayer hydration; (3) oxidative degradation is the major process during long-term storage, having an earlier onset than the hydrolytic degradation: and (4) Tempol provided significantly better protection than vitamin E to EPC liposomal PUFA against oxidative damage during long-term storage. The relevance of cholesterol's presence, as a 'drying agent', in membranes containing PUFA to resistance of biological membranes to oxidative damage is discussed.  相似文献   

13.
The hydration properties of phosphatidylcholine (PC)/water dispersions on the addition of poly(ethylene glycol) were studied by means of 2H-NMR. The quadrupole splittings and their temperature dependences correspond to measurements of PC/water dispersions at low water content. It is concluded that the bound water is partly extracted by poly(ethylene glycol) but the binding properties of the water in the inner hydration shell of about five water molecules are not changed. The ability of some phospholipid/water dispersions to undergo phase transitions to nonlamellar structures upon dehydration is discussed. Dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine do not form nonlamellar structures on addition of purified poly(ethylene glycol), as was demonstrated by means of 31P-NMR. Poly(ethylene glycol) decreases the polarity of the aqueous phase and the partition of hydrophobic molecules between the membrane and the external phase is changed. This was demonstrated using the excimer fluorescence of pyrene in a ghost suspension. It is suggested that the changes in polarity and hydration on the addition of poly(ethylene glycol) can contribute to the alterations in the membrane surface observed under conditions of membrane contact and fusion.  相似文献   

14.
The purpose of this study was to examine the effects of cholesterol surface transfer between lipid vesicles and rat arterial smooth muscle cells on endogenous synthesis of cholesterol and phosphatidylcholine. Lipid vesicles containing cholesterol and egg phosphatidylcholine in different proportions were used as the extracellular lipid source. The rate of cellular cholesterol and phosphatidylcholine synthesis was determined from the [14C]acetate incorporation into these lipid classes. [3H]Cholesterol in lipid vesicles, with a cholesterol/phospholipid (C/P) mole ratio of 1:1, was rapidly transferred into rat smooth muscle cells, with a half-time of about 3.6 hours in the absence of serum proteins. Incubation of cells for 5 hours with vesicles of a high C/P mole ratio (i.e. 1.5:1) at vesicle-cholesterol concentrations above 100 micrograms/ml resulted in a marked reduction of cellular cholesterol synthesis, whereas the rate of phosphatidylcholine synthesis was increased. Cells incubated with lipid vesicles of C/P 1:2 did not show any change in cellular cholesterol or phosphatidylcholine synthesis. Incubation of cells with egg phosphatidylcholine vesicles at concentrations above 300 micrograms/ml, on the other hand, stimulated endogenous synthesis of cholesterol without affecting cellular phosphatidylcholine synthesis. The main conclusion is that cholesterol surface transfer may influence cellular lipid metabolism in the absence of mediating serum lipoproteins in a model system with cultured cells and lipid vesicles.  相似文献   

15.
The number of water molecules bound (unfreezable) by a molecule of dipalmitoyl phosphatidylserine (DPPS) or by a molecule of dipalmitoyl phosphatidylcholine (DPPC) alone or in mixtures with cholesterol was determined by differential scanning calorimetry (DSC). When the phospholipids are in the gel state and in the absence of cholesterol, molecule of DPPS binds about 3.5 molecules of water and molecule of DPPC binds about 6 molecules of water. Number of water molecules bound increases when cholesterol crystallites are formed in the bilayer. For DPPS-cholesterol mixture at X(chol) -0.5, as well as for DPPC-cholesterol mixture at X(chol) -0.5 about 7 water molecules are bound.  相似文献   

16.
M Gutman  E Nachliel  S Moshiach 《Biochemistry》1989,28(7):2936-2940
The diffusion of protons at the immediate vicinity of (less than 10 A from) a phospholipid membrane is studied by the application of the laser-induced proton pulse. A light-sensitive proton emitter (8-hydroxypyrene-1,3,6-trisulfonate) was trapped exclusively in the hydration layers of multilamellar vesicles made of egg phosphatidylcholine, and the protons were dissociated by a synchronizing laser pulse. The recombination of the proton with pyranin anion was monitored by time-resolved spectroscopy and analyzed by a diffusion-controlled formalism. The measured diffusion coefficient is only slightly smaller than the diffusion coefficient of proton in bulk water. Modulating the width of the hydration layer by external pressure had a direct effect on the diffusibility of the proton: the narrower the hydration layer, the slower is the diffusion of protons.  相似文献   

17.
G C Newman  C Huang 《Biochemistry》1975,14(15):3363-3370
The homogeneous, single-walled phosphatidylcholine-cholesterol mixed vesicles were prepared by ultrasonic irradiation of egg phosphatidylcholine in the presence of various amounts of cholesterol in solution at 4 degrees under a nitrogen atmosphere followed by molecular sieve chromatography on a Sepharose 4B column. Physicochemical studies performed on these systems invluding sedimentation velocity, diffusion, partial specific volume, intrinsic viscosity, and trapped volume measurements allowed estimation of the weight-average vesicle weight, the vesicle shape, and bilayer membrane thickness of the binary mixture of phosphatidylcholine and cholesterol. Vesicle hydration was calculated using two different methods and the agreement between them was excellent up to cholesterol concentration of 0.32 mole fraction. It was observed that the structural parameters change slowly with increasing cholesterol content up to around 0.3 mole fraction and a relatively abrupt structural alteration occurs above this cholesterol content. This abrupt structural change is consistent with the asymmetrical distribution of lipid composition between the inner and outer bilayer face.  相似文献   

18.
The temperature and hydration dependences of lipid lateral diffusion in model membrane/D2O multilayers of dipalmitoyl (DPL), dilauryl (DLL) and egg yolk (EYPC) lecithins were measured using pulsed gradient proton nuclear magnetic resonance (NMR) spin echo techniques. Oriented samples were used to minimize anisotropic dipolar interactions and permit formation of a spin echo. Significantly lipid lateral diffusion is hydration dependent over the range studied (15–40% D2O w/w), varying in DPL over this range for example by a factor of 2. For the saturated lipids at the same hydration and temperature, diffusion decreases monotonically as the chain length increases. The results tend to be larger, by factors of 2–5, than the earlier electron spin resonance (ESR) spin label results, the differences being attributable in part to the differences in hydration and to the absence of probe effects in this work. The addition of cholesterol (28.6 mol%) decreases diffusion of the lipids. Comparisons with other methods of lateral diffusion measurements are made.  相似文献   

19.
Unesterified [3H]cholesterol is rapidly transferred between cholesterol-phosphatidylcholine vesicles and rat arterial smooth muscle cells in vitro. Exchange rate is influenced by the vesicle/cell ratio in a saturable way. The maximal transfer of cholesterol, which is 3.76 micrograms per mg cell protein during 4 h, is achieved with a vesicle/cell ratio of 3.4 X 10(7). Bovine serum albumin enhances the exchange by a factor of 4.5 compared to a protein-free system. The activation energy for the process is + 38.5 kJ X mol-1 with vesicles of 1:1 mole ratio of cholesterol to phosphatidylcholine (C/P). A fraction of the incorporated free [3H]cholesterol is esterified within 4 h with donor vesicles of over 1:1 C/P. When cells were incubated with vesicles of low C/P mole ratio (1:2) a fraction of the incorporated free [3H]cholesterol was esterified within 16 h. Our results are compatible with the aqueous diffusion mechanism of cholesterol exchange. Furthermore, we suggest that, in rat smooth muscle cells, the cell membrane cholesterol pool is not metabolically isolated from internal cholesterol pools, at least as judged by the ability of the cells to esterify incorporated free cholesterol.  相似文献   

20.
The effects of the cholesterol analog 5 alpha-cholestan-3 beta-ol-6-one (6-ketocholestanol) on bilayer structure, bilayer cohesive properties, and interbilayer repulsive pressures have been studied by a combination of x-ray diffraction, pipette aspiration, and dipole potential experiments. It is found that 6-ketocholestanol, which has a similar structure to cholesterol except with a keto moiety at the 6 position of the B ring, has quite different effects than cholesterol on bilayer organization and cohesive properties. Unlike cholesterol, 6-ketocholestanol does not appreciably modify the thickness of liquid-crystalline egg phosphatidylcholine (EPC) bilayers, and causes a much smaller increase in bilayer compressibility modulus than does cholesterol. These data imply that 6-ketocholestanol has both its hydroxyl and keto moieties situated near the water-hydrocarbon interface, thus making its orientation in the bilayer different from cholesterol's. The addition of equimolar 6-ketocholestanol into EPC bilayers increases the magnitude, but not the decay length, of the exponentially decaying repulsive hydration pressure between adjacent bilayers. Incorporation of equimolar 6-ketocholestanol into EPC monolayers increases the dipole potential by approximately 300 mV. These data are consistent with our previous observation that the magnitude of the hydration pressure is proportional to the square of the dipole potential. These results mean that 6-ketocholestanol, despite its location in the bilayer hydrocarbon region, approximately 10 A from the physical edge of the bilayer, modifies the organization of interlamellar water. We argue that the incorporation of 6-ketocholestanol into EPC bilayers increases the hydration pressure, at least in part, by increasing the electric field strength in the polar head group region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号