首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of sodium butyrate on cell proliferation was studied in eight human urothelial cell lines differing in transformation grade (TGr): Hu 1752 (mortal, TGr I); HCV29 (immortal and tumorigenic, TGr II); HCV29T, T24, T24A, T24B, Hu 961A and Hu 1703He (tumorigenic, TGr III). In all cell lines, except Hu 1752, addition of 4 mm sodium butyrate at 18 h after replating resulted in a significantly decreased population of adherent cells after a further 24–48 h. This might partially be explained by detachment of cells, probably mainly S phase cells, from the substrate in the lines HCV 29, HCV29T, Hu 961A and Hu 1703He. Flow cytometric DNA analysis of the adherent cell population showed that all TGr II and III urothelial cell lines were DNA aneuploid, and that butyrate perturbed the cell cycle distribution in these cell lines, mainly by a decrease of the S phase fraction. Flow cytometric bromodeoxyuridine (BrdUrd)/DNA analysis of continuously BrdUrd labelled cultures, using a ‘washless’ BrdUrd/DNA staining technique, showed that butyrate inhibited the G0/1-S phase transition, indicated by a delayed depletion of BrdUrd negative G0/1 cells in the cell lines HCV29, HCV29T, T24B, Hu 961A and Hu 1703He. BrdUrd/DNA analysis further showed that butyrate inhibited the G2M-G0/1 phase transition, indicated by a pronounced accumulation of BrdUrd positive G2M cells in the cell lines HCV29T, T24B, Hu 961A and Hu 1703He. Microscopy of HCV29T and Hu 961A cells indicated that this block did not occur in mitosis. The parental cell line T 24 and the cell line T 24 A did not show an accumulation of BrdUrd negative G0/1 cells or BrdUrd positive G2M cells like that occurring in the derived cell line T 24B.  相似文献   

2.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

3.
DNA of replication foci attached to the nuclear matrix was isolated from Chinese hamster ovary cells and human HeLa cells synchronized at different stages of the G1 and S phases of the cell cycle. The abundance of sequences from dihydrofolate reductase ori-β and the β-globin replicator was determined in matrix-attached DNA. The results show that matrix-attached DNA isolated from cells in late G1 phase was enriched in origin sequences in comparison with matrix-attached DNA from early G1 phase cells. The concentration of the early firing ori-β in DNA attached to the matrix decreased in early S phase, while the late firing β-globin origin remained attached until late S phase. We conclude that replication origins associate with the nuclear matrix in late G1 phase and dissociate after initiation of DNA replication in S phase.  相似文献   

4.
We have examined the sensitivity of proliferating lymphoid cells in different phases of the cell cycle to macrophage-mediated cytostatic activity. These studies evaluated the ability of target cells enriched in individual cell cycle phases to pass into the next phase during brief (2–6 hr) periods of coculture with activated or nonactivated peritoneal macrophages. Both normal (concanavalin A-stimulated spleen cells) and neoplastic (Gross virus-induced thymic lymphoma) cells were analyzed. Spleen cells or lymphoma cells were first separated by centrifugal elutriation into populations highly enriched for G1, S, or G2/M phases of the cell cycle and cultured in the presence of nonactivated or activated macrophages for periods of 2, 4, or 6 hr. The cellular DNA content of recovered nonadherent target cells was then analyzed by flow cytometry after staining with propidium iodide. Macrophage contamination of target cell populations was insignificant under these conditions. Nonactivated macrophages did not affect target cell cycle traverse when compared with target cells cultured alone. Activated macrophage mediated cytostatic activity resulted in complete block of the transition of cells in G1 phase into S phase and of the further accumulation of DNA by cells in early S phase. Cells already in mid to late S phase were able to continue DNA replication at rates nearly equivalent to control cells. There was no inhibition of the passage of cells through G2 or mitosis. These effects were seen by as early as 2 hr of macrophage-target cell coculture and both normal and neoplastic cells exhibited identical patterns of cell cycle phase sensitivity.  相似文献   

5.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9–18%) were located in G2, phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). to substantiate these findings. cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located ‘somewhere’ in G1, phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs, and QG). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following ‘recruiting’ or ‘synchronizing’ clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells.  相似文献   

6.
The calmodulin content of synchronized Chinese hamster ovary (CHO-K1) cells was determined at each phase of the cell cycle. The calmodulin content was minimum in the G1 phase, increased after the cells entered S phase and reached the maximum level at the late G2 or early M phase. When 30 μM of W-7 (calmodulin antagonist) was added at the S phase, the cell cycle was blocked at the late G2 or early M phase. The addition of W-7 also prevented the morphological changes caused by cholera toxin. These results suggest that calmodulin plays an important role in the phases through S to M, possibly in the initiation of DNA synthesis and in the mitosis.  相似文献   

7.
To better understand how the flow cytometric bromodeoxyuridine (BrdUrd)-pulse-chase method detects perturbed cell kinetics we applied it to measure cell cycle progression delays following exposure to ionizing radiation. Since this method will allow both the use of asynchronous cell populations and the determination of the alterations in cell cycle progression specific to cells irradiated in given cell cycle phases, it has a significant advantage over laborious synchronization methods. Exponentially growing Chinese hamster ovary (CHO) K1 cells were irradiated with graded doses of X-rays and pulse-labelled with BrdUrd immediately thereafter. Cells were subcultured in a BrdUrd-free medium for various time intervals and prepared for flow cytometric analysis. Of five flow cytometric parameters examined, only those that involved cell transit through G2, i.e. the fraction of BrdUrd-negative G2 cells and the fraction of BrdUrd-positive cells that had not divided, showed radiation dose-dependent delays. The magnitude of the effects indicates that the cells irradiated in G2 and in S are equally delayed. S phase transit of cells irradiated in S or in G1 did not appear to be affected. There were apparent changes in flow of cells out of G1, which could be explained by the delayed entry of G2 cells into the compartment because of G2 arrest. Thus, in asynchronous cells the method was able to detect G2 delay in those cells irradiated in S and G2 phases and demonstrate the absence of cell-cycle delays in other phases.  相似文献   

8.
Abstract. This study reports on the proliferating cell nuclear antigen (PCNA) and Ki-67 cell cycle related expression and distribution pattern analysed in the same cells. MCF-7 cells were synchronized by mitotic detachment and triple stained for DNA, PCNA and Ki-67. The major cell type was identified on each time sample as a function of the PCNA/Ki-67 pattern, and both antigens as well as DNA were quantified. During G1 phase, the expression of PCNA greatly increased whereas Ki-67 content decreased. During S phase, nuclear Ki-67 content continuously increased especially in the second half of this phase, mainly due to the accumulation of the antigen in the nucleoli. During G2 phase, the antigen significantly passed into the nucleoplasm, its content continued to increase and reached its maximum in mitotic cells. Nuclear PCNA content mostly increased in the first part of S phase and sharply declined in mitotic cells as the antigen shifted to the cytoplasm. Cells showing PCNA positive Ki-67 negative labelling were observed in all time samples from the beginning of the experiment. Their nuclear size, DNA content (of G1 cells), PCNA content (equivalent to the content of some late G, cells) and time occurrence (their percentage increased after the last late G1 cells had disappeared) tend to indicate that these cells have left the cycle by the end of G1 phase to enter a quiescent state. Cells coming out of mitosis split into two groups according to their Ki-67/PCNA content. The biggest fraction was PCNA negative and Ki-67 positive while the smallest showed positive staining for both antibodies. Cells of this second cohort slowly lost their 1–67 while their PCNA content increased as they moved through G1. Concurrently, most of the cells of the first cohort (here called Q2 and Q3 cell types) lost their Ki-67 without increasing their PCNA content; then they joined cells of the second cohort by increasing their PCNA content at the end of G, phase. Some cells of this first cohort can also increase their PCNA and thus reach cells of the first cohort before the end of G1 phase. The existence of these two main cell cohorts suggests that cells after mitosis differ in some way that make them progress dlfferently through G1. Some cells seem to go through early G1 (G1a and late G1 (Glb) while others may come out of mitosis committed to go through the following cycle by directly entering late G1 compartment.  相似文献   

9.
Density-arrested BALB/c-3T3 cells stimulated to proliferate in an amino acid-deficient medium arrest in mid-G1 at a point termed the V point. Cells released from V point arrest require 6 hr to traverse late G1 and enter S phase. As data presented here show that mRNA synthesis is needed for 2–3 hr after release of cells from the V point, after which inhibition of mRNA synthesis does not prevent entry into S phase, we used this mid-G1 arrest protocol to analyze gene expression in late G1. We found that although stimulation of cells in amino acid-deficient medium did not inhibit the induction of genes expressed in early G1, genes normally expressed in late G1 were expressed only after release from the V point. The expression of late G1 genes in cells released from the V point was temporally similar, in respect to G1 location, as was seen in stimulation of quiescent Go cells. As this protocol effectively divides gene expression into early (pre-V point) and late (post-V point) categories, it should be useful in studies of growth factor-modulated events that regulate traverse of late G1 and commitment to DNA synthesis. In addition, we used c-myb antisense oligonucleotides to show that c-myb expression, which occurs in late G1, is required for BALB/c-3T3 fibroblasts to traverse late G1 and initiate DNA synthesis. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The cell line M-07e requires either Interleukin-3 (IL-3) or granulocyte-macrophage colony stimulating factor (GM-CSF) for proliferation in vitro. Cells deprived of growth factor for up to 48 hours remain viable but no longer divide. The growth-factor-deprived M-07e cells begin to divide within 48 hours of reexposure to IL-3. Flow cytometric analysis of M-07e cells labeled with hypotonic propidium iodide demonstrates that the percentage of cells undergoing DNA synthesis decreases from 24%, in a log phase population of IL-3 stimulated cells, to 1% when cells are deprived of IL-3 for 24 hours. IL-3-deprived cells accumulate predominantly in a flow cytometry peak representative of G0/G1. DNA synthetic activity, as determined by tritiated thymidine uptake and flow cytometry, resumes between 12 and 18 hours after reexposure to IL-3, reaching a peak of up to 40% by 24 hours and returning to log phase levels by 72 hours. Prior to initiation of DNA synthesis, increases are seen in mRNA levels for five-lipoxygenase-activating protein (FLAP). Following reexposure to IL-3, a rapid time-dependent biosynthesis of leukotriene D4 (LTD4) is induced by M-07e cells. When IL-3 is added in the presence of any of three lipoxygenase inhibitors tested (Piriprost, caffeic acid, nordihydroguiaretic acid) or FLAP inhibitor, MK-886, there is dose-dependent inhibition of the resumption of proliferation and of DNA synthesis. Flow cytometric cell cycle analysis demonstrates that the inhibited cells remain in the G0/G1 population and do not progress through the cell cycle. These results are consistent with our previous observation that an intact lipoxygenase pathway is necessary for hematopoietic growth-factor-stimulated colony formation of normal bone marrow myeloid progenitors and suggest that the induction of a lipoxygenase metabolite or metabolites is necessary for myeloid cells to progress through the cell cycle when stimulated by a hematopoietic growth factor. J. Cell. Physiol. 170:309–315, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
We have recently established a cell-free system from human cells that initiates semi-conservative DNA replication in nuclei isolated from cells which are synchronised in late G1 phase of the cell division cycle. We now investigate origin specificity of initiation using this system. New DNA replication foci are established upon incubation of late G1 phase nuclei in a cytosolic extract from proliferating human cells. The intranuclear sites of replication foci initiated in vitro coincide with the sites of earliest replicating DNA sequences, where DNA replication had been initiated in these nuclei in vivo upon entry into S phase of the previous cell cycle. In contrast, intranuclear sites that replicate later in S phase in vivo do not initiate in vitro. DNA replication initiates in this cell-free system site-specifically at the lamin B2 DNA replication origin, which is also activated in vivo upon release of mimosine-arrested late G1 phase cells into early S phase. In contrast, in the later replicating ribosomal DNA locus (rDNA) we neither detected replicating rDNA in the human in vitro initiation system nor upon entry of intact mimosine-arrested cells into S phase in vivo. As a control, replicating rDNA was detected in vivo after progression into mid S phase. These data indicate that early origin activity is faithfully recapitulated in the in vitro system and that late origins are not activated under these conditions, suggesting that early and late origins may be subject to different mechanisms of control.  相似文献   

12.
The activities throughout the cell cycle of thymidine kinase (EC 2.7.1.21), dihydrothymine dehydrogenase (EC 1.3.1.2), thymidine phosphorylase (EC 2.4.2.4) and dTMP phosphatase (EC 3.1.3.35) were measured in the Epstein-Barr virally transformed human B lymphocyte line LAZ-007. Cells were synchronised at different stages of the cell cycle using the technique of centrifugal elutriation. The degree of synchrony in each cycle-stage cell population was determined by flow microfluorimetric analysis of DNA content and by measurement of thymidine incorporation into DNA. The activity of the anabolic enzyme thymidine kinase was low in the G1 phase cells, but increased many-fold during the S and G2 phases, reaching a maximum after the peak of DNA synthesis, then decreasing in late G2 + M phase. By contrast, the specific activities of the enzymes involved in thymidine and thymidylate catabolism, dihydrothymine dehydrogenase, thymidine phosphorylase and dTMP phosphatase remained essentially constant throughout the cell cycle, indicating that the fate of thymidine at different stages of the cell cycle is governed primarily by regulation of the level of the anabolic enzyme thymidine kinase and not by regulation of the levels of thymidine catabolising enzymes.  相似文献   

13.
Cloned cultures of the dinoflagellate Gonyaulax polyedra grown in a 12-h light-12-h dark cycle (LD 12:12) were synchronized to the beginning of G1 by a two sequential filtration technique. After the second filtration, with the cultures growing in LD 12:12, not many cells had divided after 1 day, but approximately half underwent cell division after 2 days. Flow cytometric measurements of the cells revealed that there is one unique S phase starting about 12 h prior to cell division and lasting for less than 4 h. A majority of cells in cultures synchronized in the same way but maintained in continuous light (LL) after filtration also divided synchronously after 2 days. Just as for the cultures in LD 12:12, those in LL have a similar discrete DNA synthesis phase prior to division. It is concluded that the circadian control of cell division acts before the S phase, giving rise to a discontinuous DNA synthesis phased by the circadian clock.  相似文献   

14.
Epidermal cell flux at the G1-S, S-G2 and G2-M transition was examined during the first 4 hr after injection of epidermis extract. the flux parameters were estimated by a combination of several methods. the G1-S and S-G2 transit rates were calculated on the basis of a double labelling technique with [3H]TdR, the G2-M flux by means of colcemid and the relative proportion of cells in the S or G2 phase by means of flow cytometry. All experiments were performed both in early morning and late evening, corresponding to maximum and minimum rates of epidermal cell proliferation in the hairless mouse. the epidermis extract inhibited the S-G and G2-M transit rates to the same degree, while the inhibition of cell flux at the G1-S transit was consistently stronger. In general, the inhibition of cell flux at the different transitions was most pronounced when the rate of cell proliferation was low and vice versa.  相似文献   

15.
In the present study, both post-irradiation DNA synthesis and G1 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cyle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G2 phase accumulation developed by Lavin et al. (1992) in characterizing AT heterozygote-like cell cycle anomally in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle.  相似文献   

16.
17.
Simian virus 40 (SV40) is capable of inducing cellular DNA synthesis in permissive and nonpermissive cells. Utilizing flow cytometry, we analyzed the DNA content changes in two diploid human cell strains and two monkey cell lines. The osteogenesis imperfects (OI) human skin fibroblasts were induced into DNA synthesis, and within one to two cell generations, a polyploid cell population was produced. With WI-38 phase II cells, a similar pattern of increased cycling of cells into DNA synthesis was observed; however, the majority (~60%) of the cells were blocked in the G2 + M phase of the cell cycle. At later time intervals, an increase in the G1 population was demonstrated. The two monkey cell lines responded to SV40 virus with an accumulation of cells in the G2 + M phase of the cell cycle. Thus, two diploid human cell strains exhibited different cell cycle kinetics early after infection with SV40 virus. The one strain (WI-38) behaved similarly to the two monkey cell lines studied. The other strain (OI) responded similarly to nonpermissive (transformin) cells infected with SV40 virus.  相似文献   

18.
To date two inhibitors of epidermal cell proliferation have been characterized: (1) a factor which depresses DNA synthesis, and (2) a factor which depresses mitotic rate. In the absence of experimental proof it has been assumed that the respective targets for these purified inhibitory factors are in G1 and G2 phases of the cell cycle. In the experiments reported here both these fractions were subjected to cell cycle phase specificity tests in order to verify these assumptions. In addition, an epidermally derived “cell line” (the sebaceous gland) and two nonectodermal tissues were examined for a response. The results suggest that the response induced by the inhibitor of DNA synthesis is cell cycle phase-specific, that the target cells are at the G1-S phase boundary, and that only epidermal cells respond. Similarly the factor which depresses the flow of cells from G2 into mitosis had no measurable effect on DNA synthesis by any of the tissues tested. The G2 inhibitor lacks an inhibitory effect on mitosis in the sebaceous gland.The physiological roles which epidermal chalones may play are briefly discussed. It is suggested that a G1–G2 chalone system may have been effective in isolating kinetically cell populations with modified function during the evolutionary development in the vertebrates.  相似文献   

19.
Evidence is presented that association of proliferating cell nuclear antigen (PCNA) with nuclear chromatin in human fibroblasts is related to the phosphorylation status of the protein. Using a hypotonic lysis procedure to extract the soluble form of PCNA, it has been shown that the remaining nuclear-bound form, predominantly in S-phase cells, is highly phosphorylated. Cells in early G1, or in G2 + M phases, contain basal levels of the bound form of the protein that is only weakly phosphorylated. Using fractionated immunoprecipitation techniques, PCNA was found to be associated with cyclin A in both soluble and insoluble fractions. In contrast, association of PCNA with cyclin D1 was found in the soluble fraction, while no detectable levels were present in the insoluble fraction. Immunofluorescence labeling and flow cytometric analysis of the cell cycle distribution of cyclin D1 and cyclin A showed that, like PCNA, maximal levels of both proteins were bound to nuclear structures at the G1/S phase boundary. These results suggest that binding of PCNA to DNA synthesis sites occurs after phosphorylation. Association with cyclin D1 and cyclin A might occur in a macromolecular complex assembled at the G1/S phase boundary to drive activation of DNA replication factors.  相似文献   

20.
Two-color fluorescence in situ hybridization (FISH) with chromosome enumeration DNA probes specific to chromosomes 7, 11, 17, and 18 was applied to CAL-51 breast cancer cells to examine whether the fluorescence intensity of FISH spots was associated with cell cycle progression. The fluorescence intensity of each FISH spot was quantitatively analyzed based on the cell cycle stage determined by image cytometry at the single-cell level. The spot intensity of cells in the G2 phase was larger than that in the G0/1 phase. This increased intensity was not seen during the early and mid S phases, whereas the cells in the late S phase showed significant increases in spot intensity, reaching the same level as that observed in the G2 phase, indicating that alpha satellite DNA in the centromeric region was replicated in the late S phase. Thus, image cytometry can successfully detect small differences in the fluorescence intensities of centromeric spots of homologous chromosomes. This combinational image analysis of FISH spots and the cell cycle with cell image cytometry provides insights into new aspects of the cell cycle. This is the first report demonstrating that image cytometry can be used to analyze the fluorescence intensity of FISH signals during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号