首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tannic acid (TA) is a naturally occurring polyphenolic compound that aggregates membranes and neutral phosolipid vesicles and precipitates many proteins. This study analyzes TA binding to lipid membranes and the ensuing aggregation. The optical density of dispersions of phosphatidylcholine (PC) vesicles increased upon the addition of TA and electron micrographs showed that TA caused the vesicles to aggregate and form stacks of tightly packed disks. Solution calorimetry showed that TA bound to PC bilayers with a molar binding enthalpy of -8.3 kcal/mol and zeta potential measurements revealed that TA imparted a small negative charge to PC vesicles. Monolayer studies showed that TA bound to PC with a dissociation constant of 1.5 microM and reduced the dipole potential by up to 250 mV. Both the increase in optical density and decrease in dipole potential produced by TA could be reversed by the addition of polyvinylpyrrolidone, a compound that chelates TA by providing H-bond acceptor groups. NMR, micropipette aspiration, and x-ray diffraction experiments showed that TA incorporated into liquid crystalline PC membranes, increasing the area per lipid molecule and decreasing the bilayer thickness by 2 to 4%. 2H-NMR quadrupole splitting measurements also showed that TA associated with a PC molecule for times much less than 10(-4) s. In gel phase bilayers, TA caused the hydrocarbon chains from apposing monolayers to fully interdigitate. X-ray diffraction measurements of both gel and liquid crystalline dispersions showed that TA, at a critical concentration of about 1 mM, reduced the fluid spacing between adjacent bilayers by 8-10 A. These data place severe constraints on how TA can pack between adjacent bilayers and cause vesicles to adhere. We conclude that TA promotes vesicle aggregation by reducing the fluid spacing between bilayers by the formation of transient interbilayer bridges by inserting its digallic acid residues into the interfacial regions of adjacent bilayers and spanning the interbilayer space.  相似文献   

2.
It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.  相似文献   

3.
A novel diacyl glycerol-based lipid with a polyphenolic head group has been synthesized and characterized. X-ray diffraction experiments show that this lipid, 1,2-dipalmitoylgalloylglycerol (DPGG), hydrates to form gel phase bilayers at 20 degrees C with extremely narrow interbilayer fluid separations, indicating that apposing DPGG bilayers strongly adhere to each other. Differential scanning calorimetry shows that fully hydrated DPGG exhibits a pretransition exotherm (3.7 kcal/mol) at 52 degrees C and a high enthalpy (11.3 kcal/mol) main endothermic transition at 69 degrees C. These thermal properties are similar to those of galactosylceramides with similar hydrocarbon chain compositions. The adhesive and thermal properties of DPGG are likely due to both intermolecular hydrogen-bonding and hydrophobic interactions between the aromatic rings on the gallic acids.  相似文献   

4.
Using x-ray diffraction and NMR spectroscopy, we present structural and material properties of phosphatidylserine (PS) bilayers that may account for the well documented implications of PS headgroups in cell activity. At 30 degrees C, the 18-carbon monounsaturated DOPS in the fluid state has a cross-sectional area of 65.3 A(2) which is remarkably smaller than the area 72.5 A(2) of the DOPC analog, despite the extra electrostatic repulsion expected for charged PS headgroups. Similarly, at 20 degrees C, the 14-carbon disaturated DMPS in the gel phase has an area of 40.8 A(2) vs. 48.1 A(2) for DMPC. This condensation of area suggests an extra attractive interaction, perhaps hydrogen bonding, between PS headgroups. Unlike zwitterionic lipids, stacks of PS bilayers swell indefinitely as water is added. Data obtained for osmotic pressure versus interbilayer water spacing for fluid phase DOPS are well fit by electrostatic interactions calculated for the Gouy-Chapman regime. It is shown that the electrostatic interactions completely dominate the fluctuational pressure. Nevertheless, the x-ray data definitively exhibit the effects of fluctuations in fluid phase DOPS. From our measurements of fluctuations, we obtain the product of the bilayer bending modulus K(C) and the smectic compression modulus B. At the same interbilayer separation, the interbilayer fluctuations are smaller in DOPS than for DOPC, showing that B and/or K(C) are larger. Complementing the x-ray data, (31)P-chemical shift anisotropy measured by NMR suggest that the DOPS headgroups are less sensitive to osmotic pressure than DOPC headgroups, which is consistent with a larger K(C) in DOPS. Quadrupolar splittings for D(2)O decay less rapidly with increasing water content for DOPS than for DOPC, indicating greater perturbation of interlamellar water and suggesting a greater interlamellar hydration force in DOPS. Our comparisons between bilayers of PS and PC lipids with the same chains and the same temperature enable us to focus on the effects of these headgroups on bilayer properties.  相似文献   

5.
Kulkarni K  Snyder DS  McIntosh TJ 《Biochemistry》1999,38(46):15264-15271
The structure, hydration properties, and adhesion energy of the membrane glycolipid galactosylceramide (GalCer) were studied by osmotic stress/X-ray diffraction analysis.(1) Fully hydrated GalCer gave a repeat period of 67 A, which decreased less than 2 A with application of applied osmotic pressures as large as 1.6 x 10(9) dyn/cm(2). These results, along with the invariance of GalCer structure obtained by a Fourier analysis of the X-ray data, indicated that there was an extremely narrow fluid space (less than the diameter of a single water molecule) between fully hydrated cerebroside bilayers. Electron density profiles showed that the hydrocarbon chains from apposing GalCer monolayers partially interdigitated in the center of the bilayer. To obtain information on the adhesive properties of GalCer bilayers, we incorporated into the bilayer various mole ratios of the negatively charged lipid dipalmitoylphosphatidylglycerol (DPPG) to provide known electrostatic repulsion between the bilayers. Although 17 and 20 mol % DPPG swelled (disjoined) the GalCer bilayers by an amount predictable from electrostatic double-layer theory, 5, 10, 13, and 15 mol % DPPG did not disjoin the bilayers. By calculating the magnitude of the electrostatic pressure necessary to disjoin the bilayers, we estimated the adhesion energy for GalCer bilayers to be about -1.5 erg/cm(2), a much larger value than that previously measured for phosphatidylcholine bilayers. The observed discontinuous disjoining with increased electrostatic pressure and this relatively large value for adhesion energy indicated the presence of an attractive interaction, in addition to van der Waals attraction, between cerebroside bilayers. Possible attractive interactions are hydrogen bond formation and hydrophobic interactions between the galactose headgroups of apposing GalCer bilayers.  相似文献   

6.
T J McIntosh  S A Simon 《Biochemistry》1986,25(17):4948-4952
The area per lipid molecule for fully hydrated dilauroylphosphatidylethanolamine (DLPE) has been obtained in both the gel and liquid-crystalline states by combining wide-angle X-ray diffraction, electron density profiles, and previously published dilatometry results [Wilkinson, D. A., & Nagle, J. F. (1981) Biochemistry 20, 187-192]. The molecular area increases from 41.0 +/- 0.2 to 49.1 +/- 1.2 A2 upon melting from the gel to liquid-crystalline phase. The thickness of the bilayer, as measured from the electron density profiles, decreases about 4 A upon melting, from 45.2 +/- 0.3 to 41.0 +/- 0.6 A. A somewhat unexpected result is that the fluid layer between fully hydrated bilayers is the same in both gel and liquid-crystalline phases and is only about 5 A thick. From these data, plus the volume of the anhydrous DLPE molecule, it is possible to determine the number of water molecules per lipid and their approximate distribution relative to the lipid molecule. Our analysis shows that there are about 7 and 9 waters per DLPE molecule in the gel and liquid-crystalline phases, respectively. About half of the water is located in the fluid space between adjacent bilayers, and the remaining waters are intercalated into the bilayer, presumably in the head group region. There are significantly fewer water molecules in the fluid spaces between DLPE bilayers than in the fluid spaces in gel- or liquid-crystalline-phase phosphatidylcholine bilayers. This small fluid space in PE bilayers could arise from interbilayer hydrogen bond formation through the water molecules or electrostatic interactions between the amine and phosphate groups on apposing bilayers.  相似文献   

7.
Steric repulsion between phosphatidylcholine bilayers   总被引:12,自引:0,他引:12  
T J McIntosh  A D Magid  S A Simon 《Biochemistry》1987,26(23):7325-7332
The change in pressure needed to bring egg phosphatidylcholine bilayers into contact from their equilibrium separation in excess water has been determined as a function of both distance between the bilayers and water content. A distinct upward break in the pressure-distance relation appears at an interbilayer separation of about 5 A, whereas no such deviation is present in the pressure-water content relation. Thus, this break is not a property of the dehydration process per se, but instead is attributed to steric repulsion between the mobile lipid head groups that extend 2-3 A into the fluid space between bilayers. That is, electron density profiles of these bilayers indicate that the observed break in the pressure-spacing relation occurs at a bilayer separation where extended head groups from apposing bilayers come into steric hindrance. The pressure-spacing data are used to separate steric pressure from the repulsive hydration pressure, as well as to quantitate the range and magnitude of the steric interaction. An appreciable fraction of the measured steric energy can be ascribed to a decrease in configurational entropy due to restricted head-group motion as adjacent bilayers come together.  相似文献   

8.
T J McIntosh  A D Magid  S A Simon 《Biochemistry》1989,28(19):7904-7912
Well-ordered multilamellar arrays of liquid-crystalline phosphatidylcholine and equimolar phosphatidylcholine-cholesterol bilayers have been formed in the nonaqueous solvents formamide and 1,3-propanediol. The organization of these bilayers and the interactions between apposing bilayer surfaces have been investigated by X-ray diffraction analysis of liposomes compressed by applied osmotic pressures up to 6 X 10(7) dyn/cm2 (60 atm). The structure of egg phosphatidylcholine (EPC) bilayers in these solvents is quite different than in water, with the bilayer thickness being largest in water, 3 A narrower in formamide, and 6 A narrower in 1,3-propanediol. The incorporation of equimolar cholesterol increases the thickness of EPC bilayers immersed in each solvent, by over 10 A in the case of 1,3-propanediol. The osmotic pressures of various concentrations of the neutral polymer poly(vinylpyrrolidone) dissolved in formamide or 1,3-propanediol have been measured with a custom-built membrane osmometer. These measurements are used to obtain the distance dependence of the repulsive solvation pressure between apposing bilayer surfaces. For each solvent, the solvation pressure decreases exponentially with distance between bilayer surfaces. However, for both EPC and EPC-cholesterol bilayers, the decay length and magnitude of this repulsive pressure strongly depend on the solvent. The decay length for EPC bilayers in water, formamide, and 1,3-propanediol is found to be 1.7, 2.4, and 2.6 A, respectively, whereas the decay length for equimolar EPC-cholesterol bilayers in water, formamide, and 1,3-propanediol is found to be 2.1, 2.9, and 3.1 A, respectively. These data indicate that the decay length is inversely proportional to the cube root of the number of solvent molecules per unit volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Pressure versus distance relationships have been obtained for egg phosphatidylcholine bilayers containing a range of cholesterol concentrations. Water was removed from between adjacent bilayers by the application of osmotic pressures in the range of 0.4-2600 atm (4 x 10(5)-2.6 x 10(9) dyn/cm2), and the distance between adjacent bilayers was obtained by Fourier analysis of X-ray diffraction data. For applied pressures up to about 50 atm and bilayer surface separations of 15-5 A, the incorporation of up to equimolar cholesterol has little influence on plots of pressure versus bilayer separation. However, for the higher applied pressures, cholesterol reduces the interbilayer separation distance by an amount that depends on the cholesterol concentration in the bilayer. For example, the incorporation of equimolar cholesterol reduces the distance between bilayers by as much as 6 A at an applied pressure of 2600 atm. At this applied pressure, electron density profiles show that the high-density head-group peaks from apposing bilayers have merged. This indicates that equimolar concentrations of cholesterol spread the lipid molecules apart in the plane of the bilayer enough to allow the phosphatidylcholine head groups from apposing bilayers to interpenetrate as the bilayers are squeezed together. All of these X-ray and pressure-distance data indicate that, by reducing the volume fraction of phospholipid head groups, cholesterol markedly reduces the steric repulsion between apposing bilayers but has a much smaller effect on the sum of the longer ranged repulsive hydration and fluctuation pressures. Increasing concentrations of cholesterol monotonically increase the dipole potential of egg phosphatidylcholine monolayers, from 415 mV with no cholesterol to 493 mV with equimolar cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ge M  Freed JH 《Biophysical journal》2003,85(6):4023-4040
The relationship between bilayer hydration and the dynamic structure of headgroups and interbilayer water in multilamellar vesicles is investigated by electron spin resonance methods. Temperature variations of the order parameter of a headgroup spin label DPP-Tempo in DOPC in excess water and partially dehydrated (10 wt % water) show a cusp-like pattern around the main phase transition, Tc. This pattern is similar to those of temperature variations of the quadrupolar splitting of interbilayer D2O in PC and PE bilayers previously measured by 2H NMR, indicating that the ordering of the headgroup and the interbilayer water are correlated. The cusp-like pattern of these and other physical properties around Tc are suggestive of quasicritical fluctuations. Also, an increase (a decrease) in ordering of DPP-Tempo is correlated with water moving out of (into) interbilayer region into (from) the bulk water phase near the freezing point, Tf. Addition of cholesterol lowers Tf, which remains the point of increasing headgroup ordering. Using the small water-soluble spin probe 4-PT, it is shown that the ordering of interbilayer water increases with bilayer dehydration. It is suggested that increased ordering in the interbilayer region, implying a lowering of entropy, will itself lead to further dehydration of the interbilayer region until its lowered pressure resists further flow, i.e., an osmotic phenomenon.  相似文献   

11.
We have used the Monte Carlo method to calculate the equilibrium properties of water between two interfaces consisting of phosphatidylcholine (PC) headgroups. Using the TIPS2 optimized potential for water-water interactions, and 6–12 and coulombic potentials for water-PC interactions, we have determined the density, orientational, and hydrogen bonding profiles of the water as functions of the location of the water relative to the PC groups. We present here our results for several different studies in which we varied the interbilayer separation, the PC group configurations, and the interbilayer aqueous density. We find that very near each surface there is a layer of water strongly bound to the PC groups, and removing this water from the density profiles reveals a region of reduced water density extending 1–2 Å further into the interbilayer space. In addition when bilayers are very close together all the water is affected by the PC groups, as revealed in the hydrogen bonding profiles.  相似文献   

12.
Both wide-angle and lamellar x-ray diffraction data are interpreted in terms of a difference in hydrocarbon chain tilt between fully hydrated dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE). Although the hydrocarbon chains of multilayers of DPPC tilt ty approximately 30 degrees relative to the normal to the plane of the bilayer, as previously reported by others, the hydrocarbon chains of DPPE appear to be oriented approximately normal to the plane of the bilayer. It is found that the chain tilt in DPPC bilayers can be reduced by either: (a) adding an n-alkane to the bilayer interiors or (b) adding lanthanum ions to the fluid layers between bilayers. A molecular packing model is presented which accounts for these data. According to this model, DPPC chains tilt because of the size and conformation of the PC polar head group.  相似文献   

13.
Bilayer structure and interbilayer repulsive pressure were measured from 5 to 50 degrees C by the osmotic stress/x-ray diffraction method for both gel and liquid crystalline phase lipid bilayers. For gel phase dibehenoylphosphatidylcholine (DBPC) the bilayer thickness and pressure-distance relations were nearly temperature-independent, and at full hydration the equilibrium fluid spacing increased approximately 1 A, from 10 A at 5 degrees C to 11 A at 50 degrees C. In contrast, for liquid crystalline phase egg phosphatidylcholine (EPC), the bilayer thickness, equilibrium fluid spacing, and pressure-distance relation were all markedly temperature-dependent. As the temperature was increased from 5 to 50 degrees C the EPC bilayer thickness decreased approximately 4 A, and the equilibrium fluid spacing increased from 14 to 21 A. Over this temperature range there was little change in the pressure-distance relation for fluid spacings less than approximately 10 A, but a substantial increase in the total pressure for fluid spacings greater than 10 A. These data show that for both gel and liquid crystalline bilayers there is a short-range repulsive pressure that is nearly temperature-independent, whereas for liquid crystalline bilayers there is also a longer-range pressure that increases with temperature. From analysis of the energetics of dehydration we argue that the temperature-independent short-range pressure is consistent with a hydration pressure due to polarization or electrostriction of water molecules by the phosphorylcholine moiety. For the liquid crystalline phase, the 7 A increase in equilibrium fluid spacing with increasing temperature can be predicted by an increase in the undulation pressure as a consequence of a temperature-dependent decrease in bilayer bending modulus.  相似文献   

14.
Phosphatidylinositol (PI) bilayers, squeezed together by applied osmotic pressures, were studied by both neutron diffraction and X-ray diffraction. The lamellar repeat period for PI bilayers decreased from 9.5 nm at an applied pressure of 1.1.10(6) dyn/cm2 (1.1 atm) to 5.4 nm at an applied pressure of 1.6.10(7) dyn/cm2 (16 atm). Further increases in applied pressure, up to 2.7.10(9) dyn/cm2 (2700 atm) reduced the repeat period by only about 0.3 nm, to 5.1 nm. Thus, a plot of applied pressure versus repeat period shows a sharp upward break for repeat periods less than about 5.4 nm. For repeat periods of less than 5.4 nm, analysis of neutron-scattering density profiles and electron-density profiles indicates that the structure of the PI bilayers changes as the bilayers are dehydrated, even though there are only small changes in the repeat period. These structural changes are most likely due to removal of water from the headgroup regions of the bilayer. D2O/H2O exchange experiments show that, at an applied pressure of 2.8.10(7) dyn/cm2, water is located between adjacent PI headgroups in the plane of the bilayer. We conclude that, although electrostatics provide the dominant long-range repulsive interaction, hydration repulsion and steric hindrance between PI headgroups from apposing bilayers provide the major barriers for the close approach of adjacent PI bilayers for repeat periods less than 5.4 nm. This structural analysis also indicates that the phosphoinositol group extends from the plane of the bilayer into the fluid space between adjacent bilayers. This extended orientation for the headgroup is consistent with electrophoretic measurements on PI vesicles.  相似文献   

15.
Results are presented of force measurements between deposited bilayers of dimyristoylphosphatidyl glycerol (DMPG) at T greater than Tm, and distearoylphosphatidyl glycerol (DSPG) at T less than Tm. Below a bilayer separation of 100 nm, a repulsive double-layer force is measured, which can be explained through the combined screening and binding effect of the counterions in electrolyte solutions of NaCl, HCl, CaCl2, or mixtures of these. The binding of cations to bilayers in the fluid phase (DMPG) appears to be greater than to bilayers in the gel phase (DSPG). At shorter range, below approximately 3 nm, an attractive interaction is measured in solutions containing CaCl2, which was found to be slightly stronger than the theoretically expected van der Waals interaction. No hydration force was observed to exist in solutions containing CaCl2. In NaCl solutions, the measured interbilayer force can completely be accounted for by the electrostatic repulsion, down to a bilayer separation of at least 2 nm, below which no accurate measurements were possible anymore. Parallel measurements on PG monolayers show that the contraction of a DMPG monolayer following addition of CaCl2 is significantly greater than what is predicted from the change in the double-layer free energy alone. This indicates that changes in the lateral interactions between the lipid headgroups probably involve Ca2+-bridge binding and/or a possible dehydration of the lipid headgroups through Ca2+ binding. The results shed new light on both the interbilayer and intrabilayer interactions of PG and identify the possible factors responsible for the morphological behavior of PG aggregates.  相似文献   

16.
The localization of the effects of DDT (5–50 mol%) addition on the acyl chain dynamics in unilamellar vesicles of two phosphatidylcholines (DPPC and egg PC) has been investigated by steady-state fluorescence polarization of a series of n-(9-anthroyloxy) fatty acids (n = 2, 6, 9, 12 and 16) whose fluorophore is located at a graded series of depths from the surface to the centre of the bilayer. The results show that DDT is a fluidizer of DPPC and egg PC bilayers. The increase in microviscosity of DPPC bilayers at 23°C begins at the centre of the bilayer (5 mol% DDT) and proceeds outward to the surface with increasing concentration of DDT (17 mol%). This pattern of effects is not evident in fluid bilayers of DPPC at 54°C or egg PC at 23°C. DDT (33 mol%) also lowers the phase transition temperature of DPPC bilayers by approximately 2 Cdeg. DDT (17 mol%) had no effect on the mean excited fluorescence life-time of 2-AP and 12-AS in DPPC, DOPC and egg PC bilayers. No quenching of 2-AP fluorescence was evident.  相似文献   

17.
The effects of the cholesterol analog 5 alpha-cholestan-3 beta-ol-6-one (6-ketocholestanol) on bilayer structure, bilayer cohesive properties, and interbilayer repulsive pressures have been studied by a combination of x-ray diffraction, pipette aspiration, and dipole potential experiments. It is found that 6-ketocholestanol, which has a similar structure to cholesterol except with a keto moiety at the 6 position of the B ring, has quite different effects than cholesterol on bilayer organization and cohesive properties. Unlike cholesterol, 6-ketocholestanol does not appreciably modify the thickness of liquid-crystalline egg phosphatidylcholine (EPC) bilayers, and causes a much smaller increase in bilayer compressibility modulus than does cholesterol. These data imply that 6-ketocholestanol has both its hydroxyl and keto moieties situated near the water-hydrocarbon interface, thus making its orientation in the bilayer different from cholesterol's. The addition of equimolar 6-ketocholestanol into EPC bilayers increases the magnitude, but not the decay length, of the exponentially decaying repulsive hydration pressure between adjacent bilayers. Incorporation of equimolar 6-ketocholestanol into EPC monolayers increases the dipole potential by approximately 300 mV. These data are consistent with our previous observation that the magnitude of the hydration pressure is proportional to the square of the dipole potential. These results mean that 6-ketocholestanol, despite its location in the bilayer hydrocarbon region, approximately 10 A from the physical edge of the bilayer, modifies the organization of interlamellar water. We argue that the incorporation of 6-ketocholestanol into EPC bilayers increases the hydration pressure, at least in part, by increasing the electric field strength in the polar head group region.  相似文献   

18.
The interaction of three vitamin A derivatives or retinoids: all-trans-retinoic acid, 13-cis-retinoic acid and retinol with multilamellar phospholipid bilayers was studied using a combination of 2H- and 31P-NMR measurements. The following model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers; (2) bilayers composed of a mixture of DPPC and bovine heart phosphatidylcholine (PC); (3) mixed PC/phosphatidylethanolamine (PE) bilayers. Only a weak interaction was observed between 13-cis-retinoic acid and DPPC membranes. Addition of all-trans-retinoic acid at a molar ratio of 1:2 to the lipid causes a small decrease (5 C degrees) in the gel to liquid crystalline phase-transition temperature of DPPC, a small increase in the order parameters of the lipid side-chains of single component bilayers and no measurable effect in the other lipid systems studied. Considerably larger perturbation in the lipid bilayer structure is introduced by addition of retinol which, at a molar ratio of 1:2 to the lipid, lowered the gel to liquid crystalline phase-transition temperature of DPPC by 21 C degrees and caused a decrease of order parameters of the lipid side-chains in all three lipid bilayer systems. These effects are consistent with intercalation of retinol molecules into the bilayer interior. The results for the mixed PC/PE bilayers indicate that the presence of retinol caused lateral separation of PE- and retinol-enriched regions.  相似文献   

19.
With the aim of gaining more insight into the forces and molecular mechanisms associated with bilayer adhesion and fusion, the surface forces apparatus (SFA) was used for measuring the forces and deformations of interacting supported lipid bilayers. Concerning adhesion, we find that the adhesion between two bilayers can be progressively increased by up to two orders of magnitude if they are stressed to expose more hydrophobic groups. Concerning fusion, we find that the most important force leading to direct fusion is the hydrophobic attraction acting between the (exposed) hydrophobic interiors of bilayers; however, the occurrence of fusion is not simply related to the strength of the attractive interbilayer forces but also to the internal bilayer stresses (intrabilayer forces). For all the bilayer systems studied, a single basic fusion mechanism was found in which the bilayers do not "overcome" their short-range repulsive steric-hydration forces. Instead, local bilayer deformations allow these repulsive forces to be "bypassed" via a mechanism that is like a first-order phase transition, with a sudden instability occurring at some critical surface separation. Some very slow relaxation processes were observed for fluid bilayers in adhesive contact, suggestive of constrained lipid diffusion within the contact zone.  相似文献   

20.
Characterization of flavonoid--biomembrane interactions   总被引:3,自引:0,他引:3  
The flavonoids comprise a large group of polyphenolic compounds that are ubiquitous in vegetables, berries, and fruits, and they have been shown to possess antioxidative activity. The interactions between flavonoids and membranes composed of dipalmitoylphosphatidylcholine (DPPC) have been studied by means of noncovalent immobilized artificial membrane (IAM) chromatography. We have also investigated flavonoid-induced calcein release from fluid egg phosphatidylcholine (EPC) vesicles. Flavonoids with more hydroxyl groups showed longer retention delays in the IAM studies, suggesting stronger interactions between the flavonoids, which are rich in hydroxyl groups, and the DPPC membrane interface. We also observed an inverse correlation between the number of hydroxyl groups in the flavonoids and their capacity to induce calcein leakage through fluid EPC bilayer membranes (the more nonpolar flavonoids caused more calcein leakage). Rhamnetin and morin, however, both showed marked activity for the DPPC membrane interface and caused significant membrane leakage. Both polar and nonpolar forces were shown to have a significant impact on the flavonoid/biomembrane interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号