首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Epstein-Barr virus nuclear antigen 2 (EBNA2) is essential for B-cell immortalization by EBV, most probably by its ability to transactivate a number of cellular and viral genes. EBNA2-responsive elements (EBNA2REs) have been identified in several EBNA2-regulated viral promoters, each of them carrying at least one RBP-Jkappa recognition site. RBP-Jkappa recruits EBNA2 to the EBNA2RE and, once complexed to EBNA2, is converted from a repressor into an activator. An activated form of the cellular receptor Notch also interacts with RBP-Jkappa, providing a link between EBNA2 and Notch signalling. To determine whether activated Notch is able to transactivate EBNA2-responsive viral promoters, we performed cotransfection experiments with activated mouse Notch1 (mNotch1-IC) and luciferase constructs of the BamHI C, LMP1, and LMP2A promoters. We present here evidence that mNotch1-IC transactivates viral promoters known to be regulated by EBNA2. As shown for EBNA2, mutations or deletions of the RBP-Jkappa sites diminish or eliminate mNotch1-IC-mediated transactivation of the promoters, pointing to an essential role for Notch-RBP-Jkappa interaction. In addition to RBP-Jkappa, other cellular factors may bind within the EBNA2REs of viral promoters. While some factors appear to play an important role in both EBNA2- and mNotch1-IC-mediated transactivation, others are only important for the activity of either EBNA2 or mNotch1-IC. We could observe specific mNotch1-IC-responsive regions, thereby throwing more light upon which cofactors interact with EBNA2 and mNotch1-IC, thus enabling them to become functionally transactivators in vivo.  相似文献   

20.
The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate. PK suppresses EBNA2's ability to transactivate the LMP1 promoter, and Ser-243 of EBNA2 is involved in this suppression. Moreover, EBNA2 is hyperphosphorylated during EBV reactivation in latently infected B cells, which is associated with decreased LMP1 protein levels. This is the first report about the effect of EBV PK on the function of one of its target proteins and regulation of EBNA2 phosphorylation during the EBV lytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号