首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorella fusca cultures growing in the light and adapting to acetate in the dark were labelled with adenine-3H and adenine-14C, respectively. Poly(A)-containing RNA from the mixed cultures was analysed for 14C/3H ratio after polyacrylamide gel electrophoresis in 98% formamide. The RNA from acetateadapting C. fusca cells contained excess label migrating in the gels at a position equivalent to about 0.85×106 mol.wt. Partially purified anti-isocitrate lyase serum linked to p-aminobenzoyl-cellulose bound 3.5–13% of polysomes from acetate-adapting C. fusca, containing 5–10% of polysomal poly(A)-containing RNA. The antibody-bound poly(A)-containing RNA fraction showed a unimodal size distribution with a mean size of about 0.85×106 mol.wt. after electrophoresis on 4% polyacrylamide gels in 98% formamide. Cell-free translation assays showed a three-fold enrichment of isocitrate lyase mRNA after antibody selection of polysomes and indicated that isocitrate lyase mRNA was abundant in acetate-adapting C. fusca cells.Abbreviations A 260 unit The amount of material in 1.0 ml giving an absorbance of 1.0 at 260 nm in a 1 cm light path - PAB-cellulose p-aminobenzoyl-cellulose - SDS sodium lauryl sulphate To whom offprint requests are to be sent  相似文献   

2.
Nitrate-selective microelectrodes were used to measure intracellular nitrate concentrations (as activities) in epidermal and cortical cells of roots of 5-d-old barley (Hordeum vulgare L.) seedlings grown in nutrient solution containing 10 mol · m–3 nitrate. Measurements in each cell type grouped into two populations with mean (±SE) values of 5.4 ± 0.5 mol · m–3 (n=19) and 41.8 ± 2.6 mol · m–3 (n = 35) in epidermal cells, and 3.2 ± 1.2 mol · m–3 (n = 4) and 72.8 ± 8.4 mol · m–3 (n = 13) in cortical cells. These could represent the cytoplasmic and vacuolar nitrate concentrations, respectively, in each cell type. To test this hypothesis, a single-cell sampling procedure was used to withdraw a vacuolar sap sample from individual epidermal and cortical cells. Measurement of the nitrate concentration in these samples by a fluorometric nitrate-reductase assay confirmed a mean vacuolar nitrate concentration of 52.6 ± 5.3 mol · m–3 (n = 10) in epidermal cells and 101.2 ± 4.8 mol · m–3 (n = 44) in cortical cells. The nitrate-reductase assay gave only a single population of measurements in each cell type, supporting the hypothesis that the higher of the two populations of electrode measurements in each cell type are vacuolar in origin. Differences in the absolute values obtained by these methods are probably related to the fact that the nitrate electrodes were calibrated against nitrate activity but the enzymic assay against concentration. Furthermore, a 28-h time course for the accumulation of nitrate measured with electrodes in epidermal cells showed the apparent cytoplasmic measurements remained constant at 5.0 ± 0.7 mol · m–3, while the vacuole accumulated nitrate to 30–50 mol · m–3. The implications of the data for mechanisms of nitrate transport at the plasma membrane and tonoplast are discussed.Symbol n 2 Chi-squared with n degrees of freedom R.-G.Z. was awarded a Sino-British Friendship Scholarship sponsored by the British Council and H.-W.K. was supported by an AFRC Linked Research Grant to A.D.T for collaboration with R.A.L. We wish to thank Dr. K. Goulding for advice on ion chromatography, Dr. K. Moore for assistance with statistical analysis and Dr. J.H. Williams for advice on the microsample analysis.  相似文献   

3.
Abstract Salt-tolerant grasses and a sedge were grown at three salinities in a controlled-environment greenhouse. They were measured for growth rate, ash content, water content and cations. Fourteen species from the genera Sporobolus, Aeluropus, Leptochloa, Paspalum, Puccinellia, Hordeum, Elymus, Distichlis and Spartina survived up to the highest salt treatment (540 mol m?3 NaCl). These were designated halophytes. Eleven species from the genera Triticum, Phragmites, Dactylotenium, Cynodon, Polypogon, Panicum, Jovea and Heleocharis only survived up to 180 mol m?3 NaCl and were designated salt-tolerant glycophytes. All species except Distichlis palmeri grew fastest on the non-saline control treatment. All species tended to have higher Na+ contents and lower K+ and water contents on saline treatments compared to control plants. Halophytes differed from glycophytes in having statistically significant lower water contents on the non-saline treatment, and lower ash contents and Na:K ratios on 180 mol m?3. However, the range of values among species was greater than the differences between halophytes and glycophytes. All species appeared to use Na+ accumulation and loss of water as the main means of osmotic adjustment. Three halophytic species were grown for a longer period of time to check the above results. The osmolality of the cell sap was measured directly by the vapour pressure method and compared to calculated values based on Na+, K+ and water contents (and assuming a balancing anion such as Cl?). Na+ and K+ alone could account for greater than 75% of the osmotic potential at all salinities. Hence, the accumulation of organic solutes did not appear to be an important factor in the osmotic adjustment of these species. The results support the conclusion that grasses coordinate Na+ uptake and water loss to maintain a constant osmotic potential gradient between the shoot tissues and the external solution. The results were compared to a previous study with dicotyledonous halophytes at the same location.  相似文献   

4.
The effects of sodium chloride salinity and hypoxia were studied in eight wheat lines and three wheat-Thinopyrum amphiploids in vermiculite-gravel culture. The lines were treated with either 100 or 150 mol m–3 NaCl with and without hypoxia. Saline hypoxic conditions significantly reduced the vegetative growth, water use, grain and straw yields for all wheat varieties except the amphiploids, whereas NaCl or hypoxia alone had less pronounced effects. In addition, saline hypoxic stress reduced K+ concentration and increased significantly the Na+ and Cl concentrations in cell sap expressed from leaves. There was more Na+ and Cl accumulation in wheats than the amphiploids in hypoxic conditions at 150 mol m–3 NaCl. Of the wheats, Pato was the most sensitive at all stress levels while aTriticum aestivum cv. Chinese Spring ×Thinopyrum elongatum amphiploid was the most tolerant of the three amphiploids.  相似文献   

5.
Summary The accession and cycling of elements in a 14-year-old coastal stand ofPinus radiata D. Don was measured for one year. The element contents (mg m–2 year–1) of bulk precipitation and throughfall respectively were: NO3–N 41, 12; NH4–N 133, 154; organic-N 157, 396; Na 4420, 9700; K 387, 2900; Ca 351, 701; Mg 486, 1320. Of the increase in element content of rainwater beneath the forest canopy 20% (NH4–N), 70% (organic-N), 3% (Na), 90% (K), 20% (Ca) and 30% (Mg) was attributed to leaching; the remainder to washing of aerosols filtered from the atmosphere by the vegetation. The canopy absorbed approximately 40 mg m–2 year–1 of NO3–N. Litterfall was the major pathway for the above-ground biogeochemical cycle of N (93%), Ca (96%) and Mg (74%), and leaching was the major (73%) pathway for K.  相似文献   

6.
The optimal conditions for opening of stomata in detached epidermis of the Crassulacean Acid Metabolism (CAM) plant Kalanchoe daigremontiana were determined. Stomatal opening in CO2–free air was unaffected by light so subsequently all epidermal strips were incubated in the dark and in CO2–free air. Apertures were maximal after 3 h incubation and were significantly greater at 15° C than 25° C. Thus stomata in isolated epidermis of this species can respond directly to temperature. Stomatal opening was greatest when the incubating buffer contained 17.6 mol m–3 K+, but decreased linearly with increasing K+ concentrations between 17.6 and 300 mol m–3; the decrease in aperture was shown to be associated with increasing osmotic potentials of the solutions. Reasons for this behaviour, which differs from that of many C3 and C4 species, are discussed. Stomatal apertures declined linearly upon incubation of epidermis on buffer solutions containing between 10–11 and 10–5 mol m–3 abscisic acid (ABA). Hence stomata on isolated epidermis of K. daigremontiana respond to lower concentrations of ABA than those of any species reported previously.  相似文献   

7.
G. Naidoo  S. G. Mundree 《Oecologia》1993,93(3):360-366
The effects of waterlogging and salinity on morphological and physiological responses in the marsh grass Sporobolus virginicus (L.) Kunth were investigated in a 4×2 factorial experiment. Plants were subjected to four salinity levels (0, 100, 200 and 400 mol m–3 NaCl) and two soil inundation conditions (drained and flooded) for 42 days. Flooding at 0 mol m–3 NaCl caused initiation of adventitious surface roots, increased internal acration and plant height, induced alcohol dehydrogenase activity (ADH), and decreased belowground biomass and the number of culms per plant. Salinity increase from 0 to 400 mol m–3 NaCl under drained conditions increased leaf and root proline concentrations and decreased photosynthesis, aboveground biomass, number of culms per plant and number of internodes per culm. Concurrent waterlogging and salinity induced ADH activity and adventitious surface roots but decreased plant height and aboveground biomass. Internal air space increased with waterlogging from 0 to 100 mol m–3 NaCl but further increases in salinity to 400 mol m–3 reduced air space. Combined waterlogging and salinity stresses, however, had no effect on photosynthesis or on the concentrations of proline in leaves or roots. These results are discussed in relation to the widespread colonization by S. virginicus of a wide range of coastal environments varying in soil salinity and in the frequency and intensity of waterlogging.  相似文献   

8.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

9.
R. J. Reid  F. A. Smith 《Planta》1992,186(4):558-566
This paper deals with the effect of calcium binding in the cell wall on the measured 45Ca influx in Chara corallina Klein ex Will. esk. R.D. Wood. Calcium in the cell wall was in the range 687–1197 (mol · m–2 compared to the sap which contained only 144–256 mol · m–2. In dilute culture solutions the calcium content of the cell wall was relatively independent of external calcium at concentrations above about 0.1 mol · m–3. The half-times for exchange of calcium from 45Ca-labelled cell walls varied from 45 min at 0.05 mol · m–3 to less than 2 min at 2 mol · m–3. The effectiveness of other cations in displacing calcium from cell walls was in the order La > Zn > Co > Ni > Mg. Rinsing of 45Ca-labelled cell walls in 2 mol · m–3 LaCl3 for 20 min removed more than 99% of the bound 45Ca. However, the residual 45Ca activity in isolated cell walls following La3+ rinsing was similar to that in whole cells. It is concluded that in whole cells 45Ca influx cannot normally be distinguished from extracellular binding of calcium. Methods are described for the measurement of 45Ca fluxes in charophyte cells by isolation of intracellular 45Ca after the uptake period using techniques which avoid contamination from the large amount of tracer bound in the cell wall. At an external calcium concentration of 1 mol · m–3, the plasmalemma influx was approx. 0.2 nmol · m–2 · s–1 of which about half entered the vacuole and half was effluxed back into the external solution. The cytoplasm filled with calcium with a half-time of 40–50 min with an apparent pool size of 50 mmol · m–3. After 2 h the net flux to the cell was almost the same as the vacuolar flux. The fluxes reported are an order of magnitude lower than previously reported calcium fluxes in plants.Abbreviations APW artificial pond water This work was supported by the Australian Research Council. The authors wish to thank Patrick Kee for his skilful technical assistance and Professor E.A.C. MacRobbie, University of Cambridge, UK, and Dr. M. Tester for helpful discussions.  相似文献   

10.
Macroconidia ofMicrosporum canis, when placed in a nutrient medium produce germ tubes within 4–6 h. Precursor incorporation studies showed that protein synthesis occurred prior to RNA synthesis. Sucrose density gradient analysis of wet and dry spore extracts revealed the presence of 16 % and 11 % polysomes respectively. The polysomal content increased to about 50% within 15 min of germination. Synthesis of RNA occurred only after 2 h of germination. Pool equilibration of the radioactive precursors was not limiting to these measurements. Polyadenylated RNA was isolated from macroconidia and was found to comprise 2–2.5 % of the total RNA. The poly(A)+ RNAs were heterodisperse and translatable in a wheat germ cell free translating system. It was concluded that macroconidia ofMicrosporum canis contain pre-formed mRNA which is translated early in germination  相似文献   

11.
Neuroblastoma cytoplasm was fractionated on sucrose gradients into polysomes (>90 S) and non-polysomal particles (<90 S). Purified RNA from these fractions was translated using a wheat germ lysate and translation products were compared by two-dimensional gel electrophoresis. Non-polysomal messenger RNA directed the synthesis of a specific subset of polysomal mRNA translation products. Careful comparison of individual translation products demonstrated that specific mRNAs were not randomly distributed between polysomes and the non-polysomal fraction.Fractionation of both RNA populations into polyadenylated (poly(A)+) and non-adenylated (poly(A)?) species indicated that specific, abundant non-polysomal mRNAs were not less adenylated than their polysomal counterparts. Furthermore, comparison of translation products from assays of subsaturating and supersaturating RNA concentrations demonstrated that no simple correlation could be made between the relative initiation efficiency of a specific mRNA and its distribution between polysomes and non-polysomal particles.  相似文献   

12.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

13.
Four physiologically and phenotypically diversified tobacco (Nicotiana tabacum L. cv. Samsun) plantlet variants had been generated by cultivation on media either lacking or containing sucrose (0 and 3 %, m/v) under two different photon flux densities (PFD), 50 µmol m–2 s–1 (LL) and 200 µmol m–2 s–1 (HL). Plantlets were transferred into soil without any pre-acclimation and grown either under PFD of 200 µmol m–2 s–1 or 700 µmol m–2 s–1. Sucrose feeding in vitro resulted in reduced degree and duration of wilting after transfer. The highest readiness for ex vitro acclimation was found in 3 % HL plants, in which changes of photosynthetic apparatus and stress responses were the smallest. On the contrary, the steepest decline of Fv/Fm ratio on the first day after transplantation, doubled chlorophyll content and almost tripled D1/LHC 2 ratio after 7 d of ex vitro growth under 700 µmol m–2 s–1 characterized 0 % HL plants, which had suffered chronic photoinhibition in vitro. Remarkably high abscisic acid content at the end of in vitro cultivation and during acclimation as well as increased synthesis of both D1 and LHC 2 proteins even at the end of analyzed acclimation period were found only in 0 % LL plants. Increase of D1/LHC 2 ratio and chlorophyll contents demonstrate that in vitro developed leaves of all plant variants are able to acclimate to new environment. The most surprising result in the whole study is the drop of D1 protein synthesis in all plants on the 3rd day. Five times decline of photoprotection level of xanthophylls in plants after ex vitro transfer into the same PFD showed stress character of in vitro cultures.  相似文献   

14.
Total stem, branch, twig, and coarse root respiration (Rt) of an adult Pinus cembra tree at the alpine timberline was measured continuously at ten positions from 7 October 2001 to 21 January 2003 with an automated multiplexing gas exchange system. There was a significant spatial variability in woody tissue respiration when expressed per unit surface area or per unit sapwood volume. Surface area related maintenance (Rm) respiration at 0°C ranged between 0.109 and 0.643 mol m–2 s–1 and there was no clear trend with respect to tissue type and diameter. Sapwood volume based Rm at 0°C by contrast, varied between 2.5 mol m–3 s–1 in the stem and 193.2 mol m–3 s–1 in thin twigs in the upper crown. Estimated Q10 values ranged from 1.7 to 3.1. These Q10 values were used along with Rm at 0°C and annual woody tissue temperature records to predict annual total Rm. Annual total Rm accounted for 73±6% of annual Rt in 2002.  相似文献   

15.
A novel integrated optical technique is used to monitor the kinetics of incorporation of glycophorin A (GPA) from solution into a planar dimyristoylphosphatidylcholine-cholesterol bilayer membrane, and the subsequent binding of wheat germ agglutinin (WGA) to the membrane-incorporated GPA. The technique significantly improves the attainable accuracy of kinetic measurements. The number of bound molecules can be determined to a precision of ca ± 80 mol µm–2. Our results show that GPA incorporates spontaneously into the bilayer. Binding of WGA to GPA is optimal in the presence of human serum albumin, and can be reversed byN-acetyl-d-glucosamine. The kinetics of the binding are consistent with the presence of two classes of kinetically distinguishable binding sites with association rates of 2.0×104 and 9.6×102 M–1 s–1, and dissociation rates of 2.7×10–3 s–1 and <10–5 s–1, respectively. A stoichiometry of 4 WGA monomers per GPA monomer was determined as characteristic of the overall binding interaction.Abbreviations DMPC dimyristoylphosphatidylcholine - GlcNAc N-acetyl-d-glucosamine - GPA glycophorin A - HSA human serum albumin - NeuNAc N-acetyl-d-neuraminic acid - TE transverse electric - TM transverse magnetic - WGA wheat germ agglutinin  相似文献   

16.
Marenco  R.A.  de C. Gonçalves  J.F.  Vieira  G. 《Photosynthetica》2001,39(4):539-543
In Ochroma pyramidale (Cav. ex Lam.) Urb., photon-saturated photosynthetic capacity (P Nmax) was 13 mol(CO2) m–2 s–1. Average stomatal conductance (g s) and water-use efficiency (WUE) were greater at high irradiance, about 260 mmol(H2O) m–2 s–1 and 2.15 g(C) kg–1(H2O), respectively. In the dark, g s values were about 30% of maximum g s. Leaf nutrient contents on a leaf area basis were 131, 15, 36, 21, and 12 mmol m–2 for N, P, K, Ca, and Mg, respectively. Ochroma also accumulated a greater amount of soluble saccharides than starch, 128 versus 90 g kg–1 (DM). The availability of N and Mg, but not P, Ca, or K, may limit photosynthetic rates of Ochroma in this site.  相似文献   

17.
Summary Nuclear poly(A)+ and polysomal poly(A)+ RNA were isolated from gastrula and early tadpole stages of the amphibianXenopus laevis. Complementary DNA was synthesized from all RNA preparations. Hybridization reactions revealed that at least all abundant and probably most of the less frequent nuclear and polysomal poly(A)+ RNA species present at the gastrula stage are also present at the early tadpole stage. On the other hand, there are nuclear RNA sequences at the latter stage which appear, if at all, only at lower concentrations at the gastrula stage. The polysomal poly(A)+ RNA hybridization reactions suggest the existence of polysomal poly(A)+ RNA sequences at early tadpole stages which are not present in the corresponding gastrula stage RNA.By cDNA hybridization with poly(A) RNA it could be shown that most of the poly(A)+ containing RNA sequences transcribed into cDNA were also present within the poly(A) RNA. It was estimated, that these sequences are 10 fold more abundant within the poly(A) polysomal RNA and 3–6 more abundant within the poly(A) nuclear RNA as compared to the poly(A)+ RNAs.  相似文献   

18.
Plant phenotype stability during ex vitro growth, one of the main requirements of plant micropropagation, was tested on tobacco. Plants cultivated in vitro in the presence of 3 % sucrose under photon flux density (PFD) of 200 mol m–2 s–1 (3 % HL plants) showed the best growth and photosynthetic parameters in the course of 7-day acclimation. However, significant change in phenotype of these plants appeared under a decrease in PFD to 50 mol m–2 s–1 during further ex vitro growth (in the period of 7th – 17th day). Much higher internodia elongation was found in 3 % HL plants in comparison with plants grown in vitro on sucrose media under PFD of 50 mol m–2 s–1 (3 % LL) or without sucrose either under PFD of 50 mol m–2 s–1 or 200 mol m–2 s–1 (0 % LL, 0 % HL). It can be presumed that 3 % HL plants show permanent demand for high PFD. Neither ABA or chlorophyll contents nor de novo thylakoid membrane synthesis were related to the morphogenic effect of low PFD. Changeable contents of hexoses in leaves of 3 % HL and 3 % LL plants were in no direct correlation to the elongated growth.  相似文献   

19.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

20.
Quaternary ammonium compounds in plants in relation to salt resistance   总被引:3,自引:0,他引:3  
Fourteen plant species exhibiting a wide range of salt resistance as halophytes, semi-resistant glycophytes and sensitive glycophytes, have been grown in nutrient solution culture under low and high salt conditions. Inorganic analyses and shoot sap osmotic pressure values of these plants confirm that osmotic compensation at high salt levels is largely achieved by the accumulation of Na salts. Choline was found in shoots and roots in the range 1.0-0.2 μmol g fr. wt?1 and varied little following salt stress. Trigonelline was found in some of the sensitive glycophytes and did not increase significantly in stressed plants. Betaine levels were high (10 μmol g fr. wt?1) in the shoot of the halophytes at low salt conditions, lower values (1–10 μmol g fr. wt?1) were found in the semi-resistant glycophytes and none detected in the sensitive glycophytes. In the two resistant groups betaine accumulated to higher levels following NaCl stress. Shoot betaine levels always exceeded root levels. Proline occurred in all plants and in all cases was accumulated following NaCl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号