首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have previously reported a family, Kindred A, with autosomal dominant generalized thyroid hormone resistance in which affected members were found to have a mutation in the carboxy-terminal domain of the c-erbA beta thyroid hormone receptor. In the current study, the thyroid hormone and DNA-binding properties of this mutant receptor were determined using c-erbA beta protein synthesized in vitro. Both the wild-type human placental c-erbA beta and Kindred A receptors bound [125I]-triiodothyronine, although the Kindred A receptor had decreased affinity for the hormone. The affinity for triiodothyronine was 4.5 x 10(9) M-1 and 2.3 x 10(10) M-1 for the mutant and wild-type receptors, respectively. No abnormality of DNA-binding was detected with the Kindred A receptor using a sensitive avidin-biotin DNA-binding assay with DNA fragments containing thyroid hormone response elements. The Kindred A mutant receptor which displays abnormal triiodothyronine-binding but normal DNA-binding activities in vitro acts as a dominant negative inhibitor of thyroid hormone action in man.  相似文献   

3.
4.
5.
6.
Resistance to thyroid hormone (RTH) syndrome is an inherited inability to respond appropriately to T3 hormone. In generalized RTH, the T3 response of both the pituitary and periphery is disrupted. In pituitary (or central) RTH, the ability of the pituitary to sense (and down-regulate) elevated T3 is selectively impaired, whereas the periphery remains relatively T3 responsive, resulting in peripheral thyrotoxicity. Both forms of disease are linked to mutations in thyroid hormone receptor (TR)-beta. TRbeta is expressed by alternate mRNA splicing as two isoforms: TRbeta2, found primarily in the pituitary/hypothalamus, and TRbeta1, expressed broadly in many tissues. We report here that the wild-type TRbeta2 isoform displays an enhanced T3 response relative to the TRbeta1 isoform. Mutations associated with generalized RTH (P453S, G345S) impair both TRbeta2 and TRbeta1 function proportionally, whereas mutations associated with pituitary-specific RTH (R338L, R338W, R429Q) disproportionately disrupt TRbeta2 function. We propose that in the normal organism, and in generalized RTH, TRbeta2 in the pituitary can sense rising T3 levels in advance of TRbeta1 in the periphery, preventing thyrotoxicity. In contrast, the TRbeta mutations associated with pituitary RTH disproportionately disrupt the pituitary's ability to sense and suppress elevated T3 levels in advance of the periphery, producing symptoms of thyrotoxicity.  相似文献   

7.
8.
9.
Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation.  相似文献   

10.
Polyamides such as the natural antibiotic distamycin A can form binary or ternary complexes with B-DNA. The driving forces and advantages for forming the ternary complexes are not fully understood. The computational studies reported herein suggest that three- and four-ring polyamides have a propensity for forming the same dimer conformations in water as those in their ternary complexes. The pre-dimerization of a polyamide in water facilitates the formation of the ternary complex, making the polyamide more selective, and tighter binding to the minor groove whose minimal width is predetermined by the B-DNA sequence. Relative to the dimer tethered with covalent bonds, the smaller, monomeric polyamide available from reversible dimerization in water makes the molecule inherently more cell permeable. A nonbonded bivalence approach that dimerizes molecules by intermolecular interactions is proposed for improving affinity, selectivity, and cell permeability.  相似文献   

11.
12.
13.
A set of thyromimetics having improved selectivity for TR-beta1 were prepared by replacing the 3'-isopropyl group of 2 and 3 with substituents having increased steric bulk. From this limited SAR study, the most potent and selective compounds identified were derived from 2 and contained a 3'-phenyl moiety bearing small hydrophobic groups meta to the biphenyl link. X-ray crystal data of 15c complexed with TR-beta1 LBD shows methionine 442 to be displaced by the bulky R3' phenyl ethyl amide side chain. Movement of this amino acid side chain provides an expanded pocket for the bulky side chain while the ligand-receptor complex retains full agonist activity.  相似文献   

14.
A set of four computer programs that search DNA sequence datafiles for transfer RNA genes have been written in IBM (Microsoft)BASIC for the IBM personal computer. These programs locate andplot predicted secondary structures of tRNA genes in the cloverleafconformation. The set of programs are applicable to eukaryotictRNA genes, including those containing intervening sequences,and to prokaryotic and mitochondrial tRNA genes. In addition,two of the programs search up to 150 residues downstream oftRNA gene sequences for possible eukaryotic RNA polymerase IIItermination sites comprised of at least four consecutive T residues.Molecular biologists studying a variety of gene sequences andflanking regions can use these programs to search for the additionalpresence of tRNA genes. Furthermore, investigators studyingtRNA gene structure-to-function relationships would not needto do extensive restriction mapping to locate tRNA gene sequenceswithin their cloned DNA fragments. Received on October 29, 1985; accepted on January 28, 1986  相似文献   

15.
16.
17.
Based on the examination of the crystal structure of rat TRbeta complexed with 3,5,3'-triiodo-l-thyronine (2) a novel TRbeta-selective indole derivative 6b was prepared and tested in vitro. This compound was found to be 14 times selective for TRbeta over TRalpha in binding and its beta-selectivity could be rationalized through the comparison of the X-ray crystallographic structures of 6b complexed with TRalpha and TRbeta.  相似文献   

18.
Based on the examination of the X-ray crystallographic structures of the LBD of TRalpha and TRbeta in complex with KB-141 (2), a number of novel 4'-hydroxy bioisosteric thyromimetics were prepared. Optimal affinity and beta-selectivity (33 times), was found with a medium-sized alkyl-substituted amido group; iso-butyl (12c). It can be concluded that bioisosteric replacements of the 4'-hydroxy position represent a new promising class of TRbeta-selective synthetic thyromimetics.  相似文献   

19.
The effects of thyroid hormone agonists on thyroid hormone receptor (TR)/DNA complex formation was investigated to elucidate the mechanism by which TRs transactivate genes in response to ligand. The data, obtained from gel shift experiments, indicate that thyroid hormones alter the conformation of TRs bound to DNA, irrespective of if the element is occupied by monomeric TR, homodimeric TR/TR, or heterodimeric complexes with the retinoid receptors RAR or RXR. Furthermore, triiodo-thyronine (T3) prevents 2 TR molecules from binding to oligonucleotides containing direct repeats or inverted palindromes of the consensus AGGTCA motif, an effect that was not detected with palindromic elements. Heterodimers bound to direct repeats were less affected: RXR/TR were fully and RAR/TR complexes partially resistant to thyroid hormone. The data suggest that a ligand-induced conformational change in TR prevents double TR occupancy of a response element containing 2 direct repeats of the consensus binding motif, possibly by steric hindrance, whereas such an event does not prevent TR/RXR heterodimers from binding to DNA. Finally, our data show that a monomeric, liganded TR bound preferentially to the second half site in a AGGTCActcaAGGTCA element, and therefore indicate that nucleotides adjacent to the consensus half site contribute to binding specificity.  相似文献   

20.
Mutations of the thyroid hormone receptor beta (TRbeta) gene cause resistance to thyroid hormone (RTH). RTH is characterized by increased serum thyroid hormone associated with nonsuppressible thyroid-stimulating hormone (TSH) and impaired growth. It is unclear how the actions of TRbeta mutants are modulated in vivo to affect the manifestation of RTH. Using a mouse model of RTH that harbors a knockin mutation of the TRbeta gene (TRbetaPV mouse), we investigated the effect of the steroid hormone receptor coactivator 3 (SRC-3) on RTH. In TRbetaPV mice deficient in SRC-3, dysfunction of the pituitary-thyroid axis and hypercholesterolemia was lessened, but growth impairment of RTH was worsened. The lessened dysfunction of the pituitary-thyroid axis was attributed to a significant decrease in growth of the thyroid and pituitary. Serum insulin-like growth factor 1 (IGF-1) was further reduced in TRbetaPV mice deficient in SRC-3. This effect led to reduced signaling of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway that is known to mediate cell growth and proliferation. Thus, SRC-3 modulates RTH by at least two mechanisms, one via its role as a receptor coregulator and the other via its growth regulatory role through the IGF-1/PI3K/AKT/mTOR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号