首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

2.
The role of lymphocyte function-associated antigen 1 (LFA-1) in human T cell chemotaxis was investigated by using mAb specific to the beta-chain (TS1/18) (CD18) and alpha-chain (TS1/22) (CD11a) of LFA-1. T cell chemotaxis in response to IL-2 and to lymphocyte chemotactic factor (LCF) was markedly suppressed by the addition of TS1/18. TS1/22 was a less effective inhibitor than TS1/18 with only LCF stimulated responses showing significant inhibition when compared in seven different T cell preparations. Neither TS1/18 nor TS1/22 antibody inhibited random T cell migration. Control mAb to CD4 T cells failed to inhibit T cell random migration or chemotaxis. Additional studies to evaluate the adherence and migration of T cells through IL-1-stimulated human umbilical vein endothelial cell (HUVEC) monolayers showed that both TS1/22 and TS1/18 suppressed T cell migration through HUVEC, but failed to inhibit adherence of T cells to these cells. These studies indicate that LFA-1 plays a role in the migration of T cells through HUVEC and in the in vitro chemotactic response of T lymphocytes to IL-2 and LCF.  相似文献   

3.
The comparative roles of the endothelial cell (EC) adhesion receptors VCAM-1 and ICAM-1 during the adhesion and transendothelial migration of T cells were examined. The adhesion of T cells to IL-1-activated EC was markedly, but not completely, inhibited by mAb to VCAM-1 as well as to its counter-receptor, VLA-4, whereas, T cell binding to IL-1-activated EC was not blocked by mAb to ICAM-1 or to its counter-receptor, LFA-1. In contrast, LFA-1/ICAM-1, but not VLA-4/VCAM-1, mediated much, but not all, of the binding of T cells to unstimulated EC. Activation of T cells with phorbol dibutyrate and ionomycin alter the receptor-counter-receptor pairs used for binding to EC. Regardless of the activation status of the EC, the binding of activated T cells was not blocked by mAb to VLA-4 or VCAM-1. Moreover, the binding of activated T cells to EC was blocked to a lesser degree by mAb to LFA-1 than that of resting T cells, and mAb to ICAM-1 blocked binding only modestly. The role of VCAM-1 and ICAM-1 during the transendothelial migration of T cells was also examined. Regardless of the activation status of the T cells or the EC, VCAM-1 was never found to function during transendothelial migration, even when it mediated the binding of resting T cells to IL-1-activated EC. In contrast, ICAM-1 played an important role in transendothelial migration under all of the conditions examined, including situations when T cell-EC binding was not mediated by ICAM-1. Immunoelectron microscopic analysis of transendothelial migration supported the conclusion that ICAM-1 but not VCAM-1 played a central role in this process. Thus, ICAM-1 was prominently and uniformly expressed at all EC membrane sites that were in contact with bound and migrating T cells, whereas VCAM-1 was localized to the luminal surface of IL-1-activated EC, but was often absent from the surface of the EC in contact with T cells undergoing transendothelial migration. These studies confirm that ICAM-1 and VCAM-1 play reciprocal roles in the binding of resting T cells to resting and IL-1-activated EC, respectively, but a less prominent role in the binding of activated T cells. Moreover, ICAM-1 but not VCAM-1 plays a role in transendothelial migration, regardless of the receptor-counter-receptor pairs used for initial binding.  相似文献   

4.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in the suppression of human B cell function by immobilized anti-CD3-activated CD4+ T cells was examined by studying the effects of mAb to these determinants. The suppressive activity was assessed by the effects of CD4+ T cells without mitomycin C treatment activated by immobilized anti-CD3 for 72 hr on the differentiation into Ig-secreting cells of B cells activated for 72 hr with immobilized anti-CD3-stimulated CD4+ T cells that had been treated with mitomycin C (T4 mito). Suppression was not observed when activated CD4+ T cells and B cells were separated by filter membranes, indicating that the suppression requires the direct interactions between anti-CD3-activated CD4+ T cells and activated B cells. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) reversed the suppression of B cell function by suppressor CD4+ T cells significantly. Reversal of suppression of B cell function was most marked when activated B cells were treated with mAb to ICAM-1 and suppressor CD4+ T cells were treated with mAb to LFA-1, but not vice versa. Studies using fluorescence-activated cell sorter revealed marked increase of expression of ICAM-1 on B cells after 72 hr of activation with immobilized anti-CD3-stimulated T4 mito. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the suppressive activity of anti-CD3-activated CD4+ T cells to B cells. Moreover, the data are consistent with a model of T-cell-mediated B cell suppression in which interactions between LFA-1 on suppressor T cells and ICAM-1 on activated B cells play a central role in the suppression of B cell function.  相似文献   

5.
The role of leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18) in T cell-endothelial cell (EC) interactions was assessed by utilizing CD11a/CD18-deficient T cell clones generated from a patient with leukocyte adhesion deficiency (LAD). The ability of these clones to bind to and migrate through monolayers of EC in vitro was compared with that of clones generated in a similar manner from normal controls. The LAD clones bound to EC to a similar extent as the controls. The contribution of other cell surface adhesion molecules was assessed with mAb blocking experiments. It was found that part of the EC binding by these CD11a/CD18-deficient clones was mediated by an interaction of very late Ag-4 (VLA-4) with vascular cell adhesion molecule-1 (VCAM-1) on the EC. In contrast to their normal ability to bind to EC, the capacity of the LAD clones to migrate through EC monolayers was significantly less than that of the control clones. This impairment in migration was not related to decreased intrinsic motility. Moreover, neither phorbol ester stimulation of the LAD clones nor IL-1 stimulation of the EC increased the capacity of the clones to migrate through EC monolayers, although binding to EC was augmented by both treatments. Only a minimal percentage of the migration of either control or LAD clones was inhibited by mAb to VLA-4 or VCAM-1. These data demonstrate that LFA-1 plays a central role in the transendothelial migration of T cells. In the absence of LFA-1, T cells retain the ability to bind to EC because of the activity of other receptor/ligand pairs, including VLA-4/VCAM-1. Finally, it is likely that, during both binding and transendothelial migration of T cells, additional cell surface molecules play a role.  相似文献   

6.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

7.
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.  相似文献   

8.
Functional studies demonstrate that T cell activation often requires not only occupancy of the TCR but costimulatory interactions of other molecules, which remain largely undefined. We have tested the hypothesis that LFA-1 interaction with its ligand intercellular adhesion molecule 1 (CD54) (ICAM-1) is such a costimulatory interaction in a model system using biochemically purified ICAM-1 and TCR cross-linking by anti-CD3 mAb OKT3 immobilized on plastic. Resting T cells do not respond to OKT3 mAb immobilized on plastic. However ICAM-1 deposited on plastic together with the nonmitogenic immobilized OKT3 results in a potent activating stimulus. This costimulation cannot be readily accounted for by ICAM-1-mediated adhesion but is consistent with a role in signaling, which is observed in ICAM-1-mediated augmentation of activation induced by PMA/ionomycin. The ability of ICAM-1 to costimulate with immobilized CD3 contrasts with minimal costimulatory activity of cytokines IL-1 beta, IL-2, and IL-6. The proliferative response to co-immobilized OKT3 and ICAM-1 is dependent on the IL-2R, which is induced only in the presence of both OKT3 and ICAM-1. The present data demonstrate that LFA-1/ICAM-1 interaction is a potent costimulus for TCR-mediated activation; this observation, interpreted in light of previous reports, suggests that LFA-1/ICAM-1 is of major physiologic importance as a costimulatory signal.  相似文献   

9.
Dual role of the CD44 molecule in T cell adhesion and activation   总被引:46,自引:0,他引:46  
Studies of T cell adhesion and activation reveal two new functions of the CD44 molecule, a molecule now recognized to be identical to three molecules of functional interest: Pgp-1, Hermes, and extracellular matrix receptor type III (ECMRIII). By screening for mAb which inhibit T cell adhesion to E, we have identified a functionally unique CD44-specific mAb, NIH44-1, which partially inhibits T cell rosetting by binding to CD44 on the E. NIH44-1, which immunoprecipitates a protein of 85 to 110 kDa with broad tissue distribution, was determined to be specific for CD44 based on comparison of its tissue distribution with multiple CD44-specific reference mAb and sequential immunoprecipitation with such mAb. Anticipating a role for many adhesion molecules in signal transduction, we studied the effect of CD44 mAb on T cell activation and observed that CD44 mAb dramatically augments T cell proliferation induced by CD3- and CD2-receptor-mediated activation. The augmentation of the response to immobilized CD3 mAb by exhaustively monocyte-depleted T cells indicates that augmentation can be mediated by binding to the T cell. Thus, our studies demonstrate specific new roles for CD44 in T cell adhesion and activation. Furthermore, we suggest that: 1) CD44 has a role in adhesion of cells of multiple lineages; and 2) CD44 may participate in adhesion not (only) by functioning as an adhesion receptor but rather by serving as an anchorage site for other adhesion molecules.  相似文献   

10.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

11.
We have analyzed activation of resting human T cells by anti-T cell receptor (TCR) monoclonal antibody (mAb) BMA031, a murine mAb of the G2b isotype. Human peripheral blood lymphocytes (PBL) respond to anti-TCR mAb by short-term proliferation in vitro and by acquisition of responsiveness to interleukin 2 (rIL-2) in the absence of detectable IL-2 production. Cell depletion and limiting dilution experiments indicate that anti-TCR mAb +/- rIL-2 stimulation covers a substantial portion of human T cells, including CD4+ and CD8+ cells. Enhancement by rIL-2 of anti-TCR mAb-induced proliferation is blocked by anti-IL-2 receptor (IL-2R, p55) mAb, while anti-TCR mAb-induced proliferation is not. In contrast, anti-TCR mAb-induced proliferation is blocked by anti-lymphocyte function antigen 1 (LFA-1, CD11a) mAb and is not demonstrable in PBL from two patients with severe congenital LFA-1 deficiency, not even in the presence of irradiated LFA-1+ PBL. We conclude that stimulation of resting human T cells by anti-TCR mAb BMA031 enables dissociation of distinct steps in T cell activation that specifically require participation of IL-2R (p55) and LFA-1 cell surface molecules in a mutually exclusive way.  相似文献   

12.
Interaction of CD2 with its ligand, LFA-3, in human T cell proliferation   总被引:9,自引:0,他引:9  
Recently, it has been demonstrated that lymphocyte function-associated Ag (LFA-3) is a natural ligand for CD2 and that this receptor-ligand interaction functions in cell-cell adhesion. In this report, we demonstrate that LFA-3 plays a role in T cell activation. L cells were transfected with human genomic DNA and sorted for expression of LFA-3. We demonstrate that LFA-3+ L cells, together with anti-CD3 mAb or with suboptimal doses of PHA, stimulate proliferation of human peripheral blood T cells. Furthermore, thymocyte proliferation was induced by LFA-3+ L cells and suboptimal doses of PHA. Proliferation was inhibited by mAb directed against either CD2 or LFA-3. Stimulation of thymocytes by the combination of PHA and LFA-3+ L cells resulted in the increased expression of the IL-2R, as well as of the surface Ag 4F2, transferrin receptor, and HLA-DR. These data support the conclusion that LFA-3 plays a role in CD2-dependent T cell activation. LFA-3 is widely distributed and is expressed on all APC and target cells. Thus, the ability of the CD2/LFA-3 interaction to costimulate with an anti-CD3 mAb suggests that the CD2/LFA-3 interaction may be involved not only in an Ag-independent alternate pathway of T cell activation but also in Ag-specific T cell activation.  相似文献   

13.
Previous studies have shown that the CXC chemokine, IFN-gamma-inducible T cell alpha chemoattractant (I-TAC), was chemotactic for IL-2-activated human T lymphocytes, which express abundant CXCR3. However, because most memory T lymphocytes are also CXCR3(+), the ability of I-TAC to promote the migration of normal human blood T cells across HUVEC monolayers in Transwell chambers was examined. I-TAC induced a marked (4- to 6-fold) increase in transendothelial migration (TEM) of T cells across unstimulated HUVEC from 5.6 to 28% of input T cells and was substantially more active than IFN-gamma-inducible protein-10, another CXCR3 ligand. I-TAC significantly enhanced TEM of T cells across TNF-alpha, but not across IFN-gamma or IFN-gamma plus TNF-alpha-activated HUVEC. IFN-gamma or IFN-gamma plus TNF-alpha-activated HUVEC produced substantial amounts of I-TAC, in contrast to TNF-alpha-treated EC. Both CD4(+) and CD8(+) T cells migrated in response to I-TAC to a similar extent, while memory T cells migrated several fold better than naive T cells. Blockade of LFA-1 strongly inhibited I-TAC-induced T cell TEM across unstimulated HUVEC, and approximately 50-60% of the TEM across cytokine-activated HUVEC. However, blocking both LFA-1 and very late Ag-4 abolished I-TAC induced T cell TEM. In vivo significant levels of I-TAC were detected in arthritic synovial fluid. Thus, I-TAC is one of the most potent chemoattractants of normal human blood CD4 and CD8 T cell TEM and is likely a major mediator of blood memory T lymphocyte migration to inflammation.  相似文献   

14.
A study was carried out on cord blood T cell activation via the CD2-mediated pathway. Despite similar percentages of circulating CD3+ and CD2+ cells in adult and cord blood, the proliferation of cord PBMC to the anti-CD3 mAb and cord T cells to anti-CD2 mAb were defective. The T cell CD3-surface structure was normally able to control CD2-mediated activation, as its modulation by a non-mitogenic anti-CD3 mAb blocked cord PBMC proliferation induced by anti-CD2 mAb. CD2-stimulated cord T cells did not proliferate and did not produce a significant amount of IL-2 in culture, although they expressed the IL-2R. This observation was confirmed by the optimal proliferation of CD2-induced cord T cells when rIL-2 was added. Despite the alternative T cell activation pathway is monocyte-independent in adults, the defective cord T cell activation via the CD2 molecule could also be bypassed by the addition of PMA, small amounts of either autologous or allogeneic adult and cord AC or simply rIL-1 alone. Our findings provide evidence for an intrinsic functional defect in cord CD2-mediated T cell activation, which is linked to an impaired increase of free cytoplasmic calcium, as confirmed by the effectiveness of calcium ionophore A23187 in restoring a good CD2-induced cord T cell proliferation and by measurement of cellular calcium uptake after activation via the CD2 molecule. The characteristics of cord T cells revealed by this study recall the thymocyte functional pattern and may represent functional expression of the previously described phenotypic immaturity of cord T cells.  相似文献   

15.
Although it is well known that in various T cell-mediated skin diseases T cells migrate preferentially to epidermis, no direct evidence has been presented in which molecules on T cells are important in directing T cell traffic to epidermis. We have previously established CD4+ autoreactive cloned T cells with a special tropism for epidermis in vitro as well as in vivo. Antibody inhibition studies demonstrated that only anti-lymphocyte function associated Ag 1 (anti-LFA-1) mAb completely inhibited the in vitro migration of the T cells toward the epidermis, whereas mAb against other T cell surface molecules had little or no effect. Monovalent F(ab) fragment of the anti-LFA-1 mAb, although less efficient, also inhibited the T cell migration. The apparent dependency of the inhibition on the anti-alpha-chain mAb suggested a major role for the alpha-chain of LFA-1 in T cell migration to epidermis. The relevance of an LFA-1-dependent mechanism to the epidermotropic migration of T cells was further strengthened by the findings that the T cell migration to epidermis was inhibited by divalent cation depletion, cytochalasin B, and low temperature. These findings indicate that the LFA-1 molecule, which is thought to be primarily involved in cell-to-cell adhesions, also plays an important role in directing T cell migration to epidermis.  相似文献   

16.
17.
Stromal cell-derived factor (SDF)-1 is a chemoattractant for T cells, precursor B cells, monocytes, and neutrophils. SDF-1alpha was also found to up-regulate expression of early activation markers (CD69, CD25, and CD154) by anti-CD3-activated CD4+ T cells. In addition, SDF-1alpha costimulated proliferation of CD4+ T cells and production of IL-2, IFN-gamma, IL-4, and IL-10. Stimulation with SDF-1alpha alone did not induce activation marker expression, proliferation, or cytokine production by the CD4+ T cells. SDF-1alpha-mediated costimulation was blocked by anti-CXC chemokine receptor-4 mAb. RANTES also increased activation marker expression by anti-CD3-stimulated peripheral CD4+ T cells, but less effectively than SDF-1alpha did, and did not up-regulate IL-2 production and proliferation. These results indicate that SDF-1 and CXC chemokine receptor-4 interactions not only play a role in T cell migration but also provide potent costimulatory signals to Ag-stimulated T cells.  相似文献   

18.
19.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

20.
Proliferative T cell responses were elicited in a comitogenic assay when purified mAb against CD 18, CD11a, LFA-3, and CD7 were immobilized onto solid plastic surfaces together with submitogenic doses of mAb against the CD3 complex. The proliferative response was associated to the production of IL-2 and to the expression of IL-2R. We explored the possibility that a second signal provided by either PMA or a Ca2+ ionofore could replace the anti-CD3 mAb in the comitogenic assay. Interestingly, our data clearly indicate that PMA but not the ionofore was capable of mediating the co-mitogenic effect in conjunction with solid-bound mAb (CDw18, CD11a, LFA-3, and CD7). We also demonstrate that the mAb (anti-CD4 and anti-CD2) which have been previously described as co-mitogenic in combination with anti-CD3 are capable of eliciting this activating signal in the presence of PMA. These data indicate that mAb to certain cell surface differentiation Ag that in soluble form inhibit T cell function such as LFA-1, LFA-3, and CD2 can under appropriate conditions induce co-mitogenic signals on T cells. Our results support the hypothesis that several cell surface differentiation Ag may participate in conjunction with the T3-Ti complex in the transmembrane signal transduction leading to T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号