首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poliovirus RNA utilizes eIF2 for the initiation of translation in cell free systems. Remarkably, we now describe that poliovirus translation takes place at late times of infection when eIF2 is inactivated by phosphorylation. By contrast, translation directed by poliovirus RNA is blocked when eIF2 is inactivated at earlier times. Thus, poliovirus RNA translation exhibits a dual mechanism for the initiation of protein synthesis as regards to the requirement for eIF2. Analysis of individual poliovirus non-structural proteins indicates that the presence of 2A(pro) alone is sufficient to provide eIF2 independence for IRES-driven translation. This effect is not observed with a 2A(pro) variant unable to cleave eIF4G. The level of 2A(pro) synthesized in culture cells is crucial for obtaining eIF2 independence. Expression of the N-or C-terminus fragments of eIF4G did not stimulate IRES-driven translation, nor provide eIF2 independence, consistent with the idea that the presence of 2A(pro) at high concentrations is necessary. The finding that 2A(pro) provides eIF2-independent translation opens a new and unsuspected area of research in the field of picornavirus protein synthesis.  相似文献   

2.
3.
4.
Initiation of poliovirus RNA translation by internal entry of ribosomes is believed to require the participation of trans-acting factors. The mechanism of action of these factors is poorly defined. The limiting amount of one of these factors, La protein, in rabbit reticulocyte lysates (RRL) has been postulated to partially explain the inefficient translation of poliovirus RNA in this system. To further characterize La activity in translation and to identify other potential limiting factors, we assayed the ability of La protein as well as purified initiation factors, eIF-2, guanine nucleotide exchange factor (GEF), eIF-4A, eIF-4B, eIF-4F, and eIF-3, to stimulate the synthesis of P1, the capsid precursor protein, in poliovirus type 1 (Mahoney) RNA-programmed RRL. Of the proteins tested, only La, GEF, and to some extent eIF-2 stimulated the synthesis of P1. The enhanced translation of P1 in response to La occurred concomitantly with the inhibition of synthesis of most aberrant polypeptides, resulting from initiation in the middle of the genome. Deletion of the carboxy-terminal half (214 amino acids) of La did not decrease its binding to the poliovirus 5' untranslated region but abrogated the stimulatory and correcting activity in translation. In contrast to La, GEF and eIF-2 stimulated the overall translation and increased the synthesis of aberrant products as well as P1. Neither La, GEF, nor any other factor stimulated translation of encephalomyocarditis virus RNA in RRL. The implications of these findings for the mechanism of internal translation initiation on picornavirus RNAs are discussed.  相似文献   

5.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

6.
Poly(rC) binding protein 2 (PCBP2) is one of several cellular proteins that interact specifically with a major stem-loop domain in the poliovirus internal ribosome entry site. HeLa cell extracts subjected to stem-loop IV RNA affinity chromatography were depleted of all detectable PCBP2. Such extracts were unable to efficiently translate poliovirus RNA, although extracts recovered from control columns of matrix unlinked to RNA retained full translation activity. Both translation and production of infectious progeny virus were restored in the PCBP2-depleted extracts by addition of recombinant PCBP2, but not by PCBP1, which is a closely related member of the protein family. The data show that PCBP2 is an essential factor, which is required for efficient translation of poliovirus RNA in HeLa cells.  相似文献   

7.
The purification of poliovirus protease 2A from infected cells by a functional assay is described. A small synthetic peptide was cleaved specifically by an esterase present in poliovirus-infected cells. Since the enzyme proved extremely unstable in crude extracts a rapid and efficient purification procedure had to be developed. By treatment with different detergents followed by high-speed centrifugation, the esterase activity was separated from inactivating cellular enzymes and was solubilized. Purification to more than 90% homogeneity could be achieved by a single chromatography step, namely, by gel filtration through Superose 12 under fast-protein liquid chromatography conditions. The esterase activity was associated with a protein of 17,000 daltons and copurified with poliovirus protein 2A. Furthermore, antibodies to 2A specifically precipitated the esterase activity. Thus, the esterase was identified as poliovirus protease 2A. Inhibition studies with known protease inhibitors revealed that 2A is probably a sulfhydryl protease. Of the metal ions tested, only zinc exerted significant inhibitory effects. The esterase activity was optimal near neutral pH and had an extremely short half-life at physiological temperatures.  相似文献   

8.
Poliovirus vectors are being studied as potential vaccine delivery systems, with foreign genetic sequences incorporated as part of the viral genome. The foreign sequences are expressed as part of the viral polyprotein. Addition of proteolytic cleavage sites at the junction of the foreign polypeptide and the viral proteins results in cleavage during polyprotein processing. The ability of foot-and-mouth disease virus (FMDV) 2A to mediate proteolytic cleavage in the context of poliovirus vectors was studied. The results demonstrate that FMDV 2A is able to generate cleavage of the foreign antigen from the viral polyprotein. A second cleavage event between the FMDV 2A peptide and the foreign protein was also observed.  相似文献   

9.
10.
General RNA binding proteins render translation cap dependent.   总被引:15,自引:2,他引:15       下载免费PDF全文
Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites.  相似文献   

11.
12.
Translation of the RNA of LSc type 1 poliovirus was examined in vivo at the restrictive temperature (39 °C). During the first two hours of infection at 39 °C the levels of viral polyribosomes were 50% lower than at 35 °C (permissive temperature). During the third hour of infection at 39 °C, only 4 to 10% of the control levels of polyribosomes were observed. Three experiments indicate that the elongation of viral peptides was not occurring properly at 39 °C. First, cultures incubated at 39 °C during the third hour of infection with both [35S]methionine and [3H]uridine exhibit a fourfold increase in the ratio of viral protein/viral RNA in the polyribosome region of sucrose gradients in comparison to controls kept at 35 °C. However, at both temperatures the relative size distribution of polyribosomes was similar. Second, the ratios of released protein/nascent protein after 90-second and 5-minute pulses with [35S]methionine indicate that elongation of peptide chains was inhibited at 39 °C. Third, when initiation of synthesis of viral protein was blocked with 150 mM-NaCl, the polyribosomes disaggregated four to five times more rapidly at 35 °C than at 39 °C. The data indicate that translation of viral RNA is inhibited at the restrictive temperature because of a reduced rate of elongation of viral proteins. The reduced rate of peptide chain elongation at 39 °C was fully reversible when cultures were shifted to 35 °C in the presence of 150 mm-NaCl. The latter finding indicates a conformational change in viral protein at 39 °C.  相似文献   

13.
14.
Role for telomere cap structure in meiosis   总被引:3,自引:0,他引:3       下载免费PDF全文
Telomeres, the natural ends of eukaryotic chromosomes, are essential for the protection of chromosomes from end-to-end fusions, recombination, and shortening. Here we explore their role in the process of meiotic division in the budding yeast, Kluyveromyces lactis. Telomerase RNA mutants that cause unusually long telomeres with deregulated structure led to severely defective meiosis. The severity of the meiotic phenotype of two mutants correlated with the degree of loss of binding of the telomere binding protein Rap1p. We show that telomere size and the extent of potential Rap1p binding to the entire telomere are irrelevant to the process of meiosis. Moreover, we demonstrate that extreme difference in telomere size between two homologous chromosomes is compatible with the normal function of telomeres during meiosis. In contrast, the structure of the most terminal telomeric repeats is critical for normal meiosis. Our results demonstrate that telomeres play a critical role during meiotic division and that their terminal cap structure is essential for this role.  相似文献   

15.
The carboxy-terminal amino acids of a number of poliovirus proteins were determined by carboxypeptidase A analysis. The nonstructural proteins P3-2, P3-4b and their precursor. P3-1b, were found to be coterminal with a sequence of -Ser-Phe-COOH. As these proteins are coded for at the extreme 3' end of the viral RNA, it is possible to establish the termination site of translation at nucleotide 7,361, 73 nucleotides before the start of the polyadenylic acid tract of the RNA. Two additional nonstructural proteins, P2-X and its precursor, P2-3b, were also found to be coterminal with a sequence of -Phe-Gln-COOH. This result confirms the existence of at least one Gln-Gly proteolytic cleavage site. These Gln-Gly cleavage sites are predicted from the nucleotide sequence to be ubiquitous throughout the poliovirus genome. The only exceptions are the cleavage sites at the carboxy termini of the structural protein VP4 and VP1. Carboxypeptidase A analysis of VP1 establishes a terminal sequence of -Thr-Tyr-COOH, and similar analysis of VP4 shows Asn to be the terminal amino acid residue, observations that prove the existence of the exceptional C-terminal amino acids. In none of the analyzed cases has C-terminal trimming after cleavage been observed.  相似文献   

16.
17.
18.
mRNA cap binding proteins: essential factors for initiating translation   总被引:50,自引:0,他引:50  
A J Shatkin 《Cell》1985,40(2):223-224
  相似文献   

19.
Fifty-eight analogues of the 5'-terminal 7-methylguanosine-containing cap of eukaryotic messenger RNA were synthesized and tested for their ability to inhibit in vitro protein synthesis. A new algorithm was developed for extracting KI, the dissociation constant for the cap analogue.eIF4E complex, from protein synthesis data. The results indicated that addition of a methyl group to the N2 of guanine produced more inhibitory compounds, but addition of a second methyl group to N2 decreased the level of inhibition dramatically. Aryl substitution at N7 improved the efficacy of guanine nucleoside monophosphate analogues. Substitution of the aromatic ring at the para position with methyl or NO2 groups abolished this effect, but substitution with Cl or F enhanced it. By contrast, aryl substitution at N7 in nucleoside di- or triphosphate analogues produced only minor effects, both positive and negative. By far the strongest determinants of inhibitory activity for cap analogues were phosphate residues. The beneficial effect of more phosphate residues was related more to anionic charge than to the number of phosphate groups per se. The second nucleotide residue in analogues of the form m7GpppN affected inhibitory activity in the order G > C > U > A, but there was no effect of 2'-O-modification. Opening the first ribose ring of m7GpppG analogues dramatically decreased activity, but alterations at the 2'-position of this ribose had no effect. Non-nucleotide-based cap analogues containing benzimidazole derivatives were inhibitory, though less so than those containing 7-methylguanine.  相似文献   

20.
Pumilio 2 (Pum2) interacts with the 3′ UTR-containing pumilio binding element (PBE) of RINGO/SPY mRNA to repress translation in Xenopus oocytes. Here, we show that Pum2 also binds directly to the 5′ 7mG cap structure; in so doing, it precludes eIF4E from binding the cap. Using deletion analysis, we have mapped the cap interaction domain of Pum2 to the amino terminus of the protein and identified a conserved tryptophan residue that mediates this specific interaction. Reporter mRNA-based assays demonstrate that Pum2 requires the conserved tryptophan to repress translation in injected Xenopus oocytes. Thus, in addition to its suggested role in regulating poly(A) tail length and mRNA stability, our results suggest that vertebrate Pumilio can repress translation by blocking the assembly of the essential initiation complex on the cap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号