首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Treatment of calf serum at 60 degrees C and pH 3.5 followed by chromatography on carboxymethyl (CM) cellulose resulted in the separation of two major peaks of alkaline RNAse activity. One was eluted from CM-cellulose at 0.075 M KCl with an overall purification of 5400-fold and the other was eluted at 0.25 M KCl with a 6700-fold purification. The RNAse eluted from CM-cellulose at 0.075 M KCl was almost completely inhibited by anti-RNAse A serum and by the endogenous RNAse inhibitor and a 33% inhibition was observed in the presence of 5 mM MgCl2. This enzyme seems to be similar or identical to RNAse A. The other RNAse, eluted from CM-cellulose at 0.25 M KCl was not inhibited by anti-RNAse A or 5 mM MgCl2 and was much less sensitive to the endogenous inhibitor. Both enzymes degraded RNA endonucleolytically and the nucleoside monophosphates obtained after partial hydrolysis of RNA by the two serum RNAases were primarily 2'- or 3' -CMP and 2'- or 3' -UMP. Poly(A), native DNA and denatured DNA were degraded slowly or not at all. The RNAase A-like enzyme degraded poly(C) at a significantly faster rate, and poly(U) at a slower rate, than RNA. However, the other serum RNAase was more active with poly(U) than with RNA and almost inactive with poly(C) as the substrate.  相似文献   

3.
Intracisternal A particles from the FLOPC-1 line of BALB/c myeloma have been shown to contain high-molecular-weight RNA (60 to 70S) that is sensitive to RNase, alkali degradation, and heat but resistant to Pronase treatment. The intracisternal A-particle RNA contains tract of poly (A) approximately 180 nucleotides long. As shown in a reconstitution experiment, by antigenic analysis of A-particle preparation and the SC cytopathogenicity assay, the 70S RNA was not due to contamination by type C virus particles. The FLOPC-1 intracisternal A particles also possess an endogenous RNA-dependent DNA polymerase. The enzyme required Mn2+ or Mg2+, dithiothreitol, detergent, and four deoxyribonucleoside triphosphates for maximum activity. Enzymatic activity was maximally stimuated by poly (rC)-oligo (dG)12-18 and less with poly (rG)-oligo (dC)10 or poly (rA)-oligo (dT)12-18 as compare with synthetic DNA/DNA duplex templates such as poly (dA)-oligo (dT)12-18. The enzyme can utilize the A-particle endogenous RNA as template as shown by analysis of the early and late DNA products of the endogenous reaction by CsSO4 isopycnic gradient centrifuation and hybridization of purified 70S or 35S A-particle RNA with the purified complementary DNA product. Approximately 50% of the A-particle complementary DNA also hybridized with oncornavirus RNA.  相似文献   

4.
1. An endonuclease has been isolated from the nuclei of rye (Secale cereale L) germ and partially purified. The enzyme shows optimum activity over the pH range 5.4-7.4 towards both DNA and RNA, and has no phosphomonoesterase or phosphodiesterase activity. 2. DNA is degraded by the rye germ nuclease to oligonucleotides of similar size, and RNA to oligonucleotides and mononucleotides containing a C-terminal 5'-phosphate group. 3. The rate of hydrolysis of nuclear acids by the enzyme decreases in the following order: native DNA greater than denatured DNA greater than RNA. Synthetic polynucleotides are hydrolysed at a rate decreasing in the order: poly(A) greater than poly(U) greater than poly(C) greater than poly(G).  相似文献   

5.
RNA covalently linked to double-stranded RNA (dsRNA) is preferentially degraded in extracts of interferon-treated HeLa cells [Nilsen, T. W., & Baglioni, C. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2600-2604]. The size of the dsRNA required for this preferential degradation has been determined by annealing poly(I) of known length to the poly(C) tract of encephalomyocarditis virus (EMCV) RNA or by annealing poly(U) to poly(A) of known length of vesicular stomatitis virus mRNA. The dsRNA must be longer than about 60 base pairs to observe the preferential degradation of RNA. Moreover, triple-stranded regions that do not activate synthesis of 2',5'-oligo(A) and ethidium bromide, which intercalates in dsRNA and blocks 2',5'-olido(A) polymerase activation, prevent this degradation. Ethidium also blocks the degradation of the replicative intermediate of EMCV by extracts of interferon-treated cells. These experiments indicate that synthesis of 2',5'-oligo(A) is required for the degradation of RNA linked to dsRNA. The 2',5'-oligo(A)-dependent endonuclease does not cleave single- or double-stranded DNA, nor does it cleave homopolyribonucleotides. The potential role of the 2',5'-oligo(A) polymerase/endonuclease system in the inhibition of viral RNA replication is discussed.  相似文献   

6.
Two RNase H (RNA-DNA hybrid ribonucleotidohydrolase, EC 3.1.4.34) activities separable by Sephadex G-100 gel filtration were identified in lysates of Moloney murine sarcoma-leukemia virus (MSV). The larger enzyme, which we have called RNase H-I, represented about 10% of the RNase H activity in the virion. RNase H-I (i) copurified with RNA-directed DNA polymerase from the virus, (ii) had a sedimentation coefficient of 4.4S (corresponds to an apparent mol wt of 70,000), (iii) required Mn-2+ (2 mM optimum) for activity with a [3-h]poly(A)-poly(dT) substrate, (iv) eluted from phosphocellulose at 0.2 M KC1, and (v) degraded [3-H]poly(A)-poly(dT) and [3-H]poly(C)-poly(dG) at approximately equal rates. The smaller enzyme, designated RNase H-II, which represented the majority of the RNase H activity in the virus preparation, was shown to be different since it (i) had no detectable, associated DNA polymerase activity, (ii) had a sedmimentation coefficient of 2.6S (corresponds to an apparent mol wt of 30,000), (iii) preferred Mg-2+ (10 to 15 mM optimum) over Mn-2+ (5 to 10 mM optimum) 2.5-fold for the degradation of [3-H]poly(A)-poly(dT), and (iv) degraded [3-H]poly(A)-poly(dT) 6 and 60 times faster than [3-H]poly(C)-poly(dG) in the presence of Mn-2+ and Mg-2+, respectively. Moloney MSV DNA polymerase (RNase H-I), purified by Sephadex G-100 gel filtration followed by phosphocellulose, poly(A)-oligo(dT)-cellulose, and DEAE-cellulose chromatography, transcribed heteropolymeric regions of avian myeloblastosis virus 70S RNA at a rate comparable to avian myeloblastosis virus DNA polymerase purified by the same procedure.  相似文献   

7.
J D Engel  N Davidson 《Biochemistry》1978,17(18):3883-3888
We have observed that the enzyme polynucleotide phosphorylas from M. luteus or from E. coli will polymerize adenosine (A) from adenosine diphosphate onto 3' ends of RNA molecules. For gene mapping, the poly(A)-tailed RNA is hybridized to its complementary sequence on a longer DNA strand. The position of the poly(A)tail, and thus the position of the 3' end of the RNA on the DNA strand, can then be observed by electron microscopy. Our preferred mapping technique involves the synthesis of a poly(A)-specific label by polymerization of a poly(dBrU) tail onto one or both ends of a linear duplex DNA of defined length (a restriction fragment) and hybridization of this label to the poly(A) tail. In test experiments with a plasmid containing a Drosophila DNA sequence coding for 5S rRNA genes, overall labeling efficiencies of 70--80% were achieved.  相似文献   

8.
A chromatin bound endonuclease (Mr:107,000) has been extracted and partially purified from the siliceous sponge Geodia cydonium. Disc gel electrophoresis showed that only one enzyme was present in the partially purified preparation which was able to degrade DNA and poly(A). The enzyme liberates oligonucleotides on incubation with poly(A), which are further degraded to yield the 5'-mononucleotide, which has a pI of 6.5 and a pH optimum of 7.5-8.0. Cations are not required for enzymic activity and EDTA does not inhibit the enzyme. Only iodosobenzoic acid was found to completely inhibit the enzyme. The enzyme hydrolysed poly(A), poly(U), poly(C), DNA, poly[d(A-T)], poly[d(G-C)], but not poly (dA) or poly(G).  相似文献   

9.
Polyadenylation of mRNA has been shown to target the RNA molecule for rapid exonucleolytic degradation in bacteria. To elucidate the molecular mechanism governing this effect, we determined whether the Escherichia coli exoribonuclease polynucleotide phosphorylase (PNPase) preferably degrades polyadenylated RNA. When separately incubated with each molecule, isolated PNPase degraded polyadenylated and non-polyadenylated RNAs at similar rates. However, when the two molecules were mixed together, the polyadenylated RNA was degraded, whereas the non-polyadenylated RNA was stabilized. The same phenomenon was observed with polyuridinylated RNA. The poly(A) tail has to be located at the 3' end of the RNA, as the addition of several other nucleotides at the 3' end prevented competition for polyadenylated RNA. In RNA-binding experiments, E. coli PNPase bound to poly(A) and poly(U) sequences with much higher affinity than to poly(C) and poly(G). This high binding affinity defines poly(A) and poly(U) RNAs as preferential substrates for this enzyme. The high affinity of PNPase for polyadenylated RNA molecules may be part of the molecular mechanism by which polyadenylated RNA is preferentially degraded in bacterial cells.  相似文献   

10.
The purification scheme for a 5'----3' exoribonuclease of Saccharomyces cerevisiae has been modified to facilitate purification of larger amounts of enzyme and further extended to yield highly purified enzyme by use of poly(A)-agarose chromatography. As determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or physical characterization, the enzyme has a molecular weight of about 160,000. Further studies of its substrate specificity show that poly(C) and poly(U) preparations require 5' phosphorylation for activity and that poly(A) with a 5'-triphosphate end group is hydrolyzed at only 12% of the rate of poly(A) with a 5'-monophosphate end group. DNA is not hydrolyzed, but synthetic polydeoxyribonucleotides are strong competitive inhibitors of the hydrolysis of noncomplementary ribopolymers. Poly(A).poly(U) and poly(A).poly(dT) are hydrolyzed at 60 and 50%, respectively, of the rate of poly(A) at 37 degrees C. The RNase H activity of the enzyme can also be demonstrated using an RNA X M13 DNA hybrid as a substrate. When poly(dT).poly(dA) with a 5'-terminal poly(A) segment on the poly(dA) is used as a substrate, the enzyme hydrolyzes the poly(A) "tail," removing the last ribonucleotide, but does not hydrolyze the poly(dA).  相似文献   

11.
A major endonuclease has been purified approximately 800-fold from rat liver nuclei using poly(A) as substrate. The enzyme had a molecular weight of about 50,000, and active fractions were obtained which contained no nucleic acid. Enzymatic activity was optimal between pH 6 and 7 and was totally dependent on the presence of a divalent cation. The reaction was inhibited by high ionic strength, polydextran sulfate, heparin, and sodium pyrophosphate. The purified enzyme readily hydrolyzed poly(A), poly(U), poly(C), and denatured DNA, whereas poly(G) was not degraded, and transfer RNA, ribosomal RNA, and native DNA were hydrolyzed only at relatively slow rates. These data suggest that the enzyme may be specific for single-stranded polynucleotides. The purified enzyme was essentially devoid of exonuclease activity, and the products of exhaustive endonuclease digestion of poly(A) were small oligonucleotides terminated with a 5'-phosphoryl group. Evidence was obtained that this endonuclease is localized in the nucleoplasm. Possible functions for this activity are discussed.  相似文献   

12.
Mtr4p belongs to the Ski2p family of DEVH-box containing proteins and is required for processing and degradation of a variety of RNA substrates in the nucleus. In particular, Mtr4p is required for creating the 5.8 S ribosomal RNA from its 7 S precursor, proper 3'-end processing of the U4 small nuclear RNA and some small nucleolar RNAs, and degradation of aberrant mRNAs and tRNAs. In these studies we have shown that Mtr4p has RNA-dependent ATPase (or dATPase) activity that is stimulated effectively by likely substrates (e.g. tRNA) but surprisingly weakly by poly(A). Using an RNA strand-displacement assay, we have demonstrated that Mtr4p can, in the presence of ATP or dATP, unwind the duplex region of a partial duplex RNA substrate in the 3'-->5' direction. We have examined the ability of Mtr4p to bind model RNA substrates in the presence of nucleotides that mimic the stages (i.e. ATP-bound, ADP-bound, and nucleotide-free) of the unwinding reaction. Our results demonstrate that the presence of a non-hydrolyzable ATP analog allows Mtr4p to discriminate between partial duplex RNA substrates, binding a 3'-tailed substrate with 5-fold higher affinity than a 5'-tailed substrate. In addition, Mtr4p displays a marked preference for binding to poly(A) RNA relative to an oligoribonucleotide of the same length and a random sequence. This binding exhibits apparent cooperativity and different dynamic behavior from binding to the random single-stranded RNA. This unique binding mode might be employed primarily for degradation.  相似文献   

13.
An endoribonuclease existing as a complex with inhibitor in the cytosol of rat liver has been purified about 128,000-fold after inactivation of the inhibitor with CdCl2. The enzyme had a molecular weight of 16,000 and produced 3'-CMP via 2',3'-cyclic phosphate of cytidine from poly(C). The breakdown of poly(U) by the enzyme was less than 5% of poly(C) breakdown. Poly(A) was not hydrolyzed by the enzyme. The enzyme had a pH optimum of 7.5-8, was heat-stable and had a Km of 952 micrograms yeast RNA and a Km of 198 micrograms poly(C) per ml. The maximal velocities for yeast RNA and poly(C) degradation were 3,970 A260/min/mg protein and 1,890 A260/min/mg protein, respectively. The enzyme was slightly stimulated by polyamines or monovalent and divalent cations except Mn2+, but was inhibited by nucleoside triphosphate, poly(G) and rat liver RNase inhibitor. Inhibition of the enzyme by rat liver RNase inhibitor was not prevented by monovalent and divalent cations or polyamines, although inhibition by poly(G) was prevented by these ions.  相似文献   

14.
The extracellular nuclease activities of Alteromonas espejiana sp. BAL 31 are mediated by at least two distinct protein species that differ in molecular weights and catalytic properties. The two species that have been purified to homogeneity and characterized, the "fast" (F) and "slow" (S) enzymes, both possess an exonuclease activity that shortens both strands of duplex DNA, with the F nuclease displaying a much greater (approximately 19-fold) turnover number for this degradation than the S species. In the present article, it is shown that the F species also mediates the terminally directed hydrolysis of a linear duplex RNA, gradually shortening molecules of this substrate through a mechanism that results in the removal of nucleotides from both the 3' and the 5' ends. This degradation proceeds with very infrequent introduction of scissions away from the termini as demonstrated by gel electrophoretic examination of the products of partial degradation, both in duplex form and after denaturation by reaction with CH3HgOH, and by electron microscopic characterization of duplex partially degraded molecules. The apparent Michaelis constant and turnover number have been determined. At equimolar enzyme concentrations in the limit of high substrate concentration, the F nuclease will degrade duplex RNA at a rate 0.021 +/- 0.010 (S.D.) times that for a duplex DNA of comparable guanine + cytosine content. The S species, by contrast, shows very little activity against the duplex RNA substrate relative to that of the F enzyme.  相似文献   

15.
A novel endonuclease from adult hen liver nuclei has been purified to a homogeneous state through salt extraction, ammonium sulfate fractionation, gel filtration, acetone fractionation, and successive chromatography of 1) hydroxyapatite and DNA Sepharose and 2) hydroxyapatite and isoelectric focusing. The endonuclease has a pH optimum at 9.0 and requires Mg2+ for activity. The enzyme hydrolyzes more rapidly in the order of polynucleotide: denatured DNA = rRNA greater than poly(dA) = poly(dT) greater than poly(dC) = poly(dG) greater than native DNA. This endonuclease degrades denatured DNA about 20 times more rapidly than does the native DNA. The products contain 5'-phosphoryl and 3'-hydroxyl termini and all four deoxynucleotides are present while dGMP is predominant. The enzyme cleaves the circular duplex PM2 DNA, endonucleotically, via single strand scission. The isoelectric point is 10.2 +/- 0.2 and the molecular weight is 43,000 +/- 2,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. Pyridoxal 5'-phosphate and 2,3-butanedione inhibit the catalytic activity, respectively. The inhibition of DNA binding activity was also seen with former, but not with the latter. Purified Mg2+-dependent alkaline endonuclease was used to investigate the nature of poly(ADP-ribose) inhibition of the enzyme. In contrast to the Ca2+/Mg2+-dependent endonuclease (Yoshihara, K., Tanigawa, Y., Burzio, L., and Koide, S. S. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 289-293), ADP-ribosylation of the endonuclease protein was not observed. When 100 ng of the poly(ADP-ribose) having four to five ADP-ribose units per molecule were added to the nuclease assay system (total volume of 0.2 ml) 14% inhibition was observed, and increase in the chain length increased the inhibition. When 100 ng of poly(ADP-ribose) consisting of 20 or more units of the ADP-ribose per mol were added, the inhibition was over 95%. The possible role of the poly(ADP-ribose)-sensitive endonuclease is discussed.  相似文献   

16.
17.
We investigated the ribonucleolytic breakdown of poly(U), poly(A), RNA trascribed from calf thymus DNA with E. coli RNA polymerase, ribosomal RNA, tRNA and mengovirus RNA by an enzyme fraction obrained from a postribosomal supernatant of Ehrlich ascites tumor cells. The single-stranded homopolyribonucleotides are preferentially degraded by the enzyme fraction with the production of ribonucleoside 5'-monophosphates. The RNase activity is completely dependent on the presence of Mg2+ ions and is highest at Mg2+ and K+ concentrations optimal for cell-free protein synthesis. Ribonucleoside 5'-monophosphates, ribonucleoside 2'(3')-monophosphates, ribonucleoside 2'(3'),5'-bisphosphates and transition state analogs consisting of vanadyl sulfate and either ribonucleosides or ribonucleoside 5'-monophosphates in a molar ratio 1:1 inhibit the ribonucleolytic activity of the enzyme fraction. The ribonucleoside 2'(3'),5'-bisphosphates and the transition state analogs are the most effective inhibitors. However, only in the presence of ribonucleoside 2'(3'),5'-bisphosphates a concomitant stimulation by 50 to 60% of poly(U)-directed polyphenylalanine synthesis is observed; all the other RNase inhibitors tested also inhibit polypeptide synthesis. The results of preliminary experiments show that poly(U) and ribonucleoside 2'(3'),5'-bisphosphates are well suited as ligands for affinity chromatography of ribonucleases from Ehrlich ascites tumor cells.  相似文献   

18.
DNA ligase has been purified to homogeneity from 6-12 h Drosophila melanogaster embryos (Rabin, B. A., Hawley, R. S., and Chase, J. W. (1986) J. Biol. Chem. 261, 10637-10645). This enzyme had an apparent Km for ATP of 1.6 microM. Of a variety of nucleotides tested, only adenosine 5'-O-(3-thio)triphosphate could substitute for ATP in the joining reaction. The enzyme was competitively inhibited by dATP, with an apparent Ki of 2.3 microM. The apparent Km for DNA using p(dT)20 annealed with poly(dA) as substrate was 1.0 microM. Studies utilizing synthetic homopolymers showed that in addition to joining DNA to DNA, this enzyme could join the 5'-phosphoryl termini of RNA to the 3'-hydroxyl termini of DNA or RNA, when they were annealed with DNA. In addition, p(dT)7U could be joined when annealed with poly(dA). No joining was detected when RNA served as the template. Drosophila DNA ligase also catalyzed the joining of oligonucleotides containing a single mismatched nucleotide at their 3'-hydroxyl termini, as well as DNA containing short, complementary 5'-protruding ends, and in the presence of polyethylene glycol 6000, blunt-ended duplex DNA. The overall reaction mechanism was shown to be identical to that of the homologous prokaryotic DNA ligases. The joining reactions catalyzed by the Drosophila and T4 DNA ligases were shown to be reversible. Incubation of superhelical closed circular DNA molecules with the purified enzymes and AMP resulted in the production of a population of DNA molecules which had lost most, if not all, of their superhelical density.  相似文献   

19.
The putative 15 S precursor of globin mRNA contains a poly (A) sequence   总被引:2,自引:0,他引:2  
[3H] Uridine or [3H] adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA. A poly (A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H] uridine was fractionated by chromatography on poly (U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

20.
A small endodeoxyribonuclease )2.3 S) that is active on single-stranded DNA has been extensively purified from Escherichia coli so as to be free of other known DNases. It has an alkaline pH optimum (9.5), requires Mg2+, and makes 3'-hydroxy and 5'-phosphate termini. The nuclease nicks duplex DNA, particularly if treated with OsO4, irradiated with ultraviolet light, or exposed to pH 5. The uracil-containing duplex DNA from the Bacillus subtilis phage PBS-2 is an especially good substrate; it is made acid-soluble by levels of the enzyme which fail to produce any acid-soluble material in other single-stranded or duplex DNAs. Neither RNA nor RNA-DNA hybrid are degraded by the enzyme. The enzyme specificity suggests that it might act at abnormal regions in DNA, so that its in vivo function could be to initiate an excision repair sequence. Its high activity on uracil-containing DNA could imply that the enzyme provides an alternative mechanism for excising uracil residues from DNA to the pathway utilizing uracil-DNA N-glycosidase. We suggest that this enzyme be designated as endonuclease V of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号