首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we review the approaches developed in our laboratory to fabricate polymer-based microfluidic devices to suit a range of applications in bio- or chemical analysis. Thermoplastic materials such as polycarbonate (PC) and poly(methyl methacrylate) (PMMA) are used to fabricate microfluidic devices via hot embossing. To emboss microchannels, we use hard stamps fabricated in silicon or soft stamps molded on poly(dimethylsiloxane) (PDMS). Hard stamps are fabricated on silicon wafers through photolithography and deep reactive ion etching (DRIE). Soft stamps are fabricated by casting PDMS prepolymer on silicon molds. To enclose the fluidic channels, direct fusion bonding was found to produce the highest bond strength with minimal structural deformation. One-step photolithographic methods have also been explored to produce via photochemical patterning microfluidic structures in photocurable materials. We use the photocurable capabilities of a PDMS copolymer, which incorporates a methacrylate crosslinker. Microfluidic channels are produced via one step-photopatterning processes by crosslinking the prepolymer mixture through a photomask. The smaller feature size attainable was 100 microm. Structures with higher spatial resolution are fabricated through a photoimprinting process whereby a mold is pressed against the precured mixture during UV crosslinking exposure. The application of the fabricated fluidic devices in electrophoretic ion analysis is also presented.  相似文献   

2.
We demonstrate the formation of micropatterned sol-gel structures containing active proteins by patterning with polydimethylsiloxane (PDMS) microchannels. To transport sol solution efficiently into the hydrophobic PDMS microchannels, a hydrophilic-hydrophobic block copolymer was used to impart hydrophilicity to the PDMS microchannels. Poor adhesion of the micropatterned gel structure onto glass slides was improved by treating the glass surface with a polymeric substrate. To minimize cracks in the gel microstructure, hybrid matrices of interpenetrating organic and inorganic networks were prepared containing the reactive organic moieties polyvinylalcohol or polyvinylpyrrolidone. Retention of biochemical activity within the micropatterned gel was demonstrated by performing immunobinding assays with immobilized immunoglobulin G (IgG) antibody. The potential application of microfluidics technology to immobilized-enzyme biocatalysis was demonstrated using PDMS-patterned microchannels filled with trypsin-containing sol-gels. This work provides a foundation for the microfabrication of functional protein chips using sol-gel processes.  相似文献   

3.

Background

The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC) deposited on polydimethylsiloxane (PDMS) as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2) cells.

Principal Findings

Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS) influence and modulate initial extracellular matrix (ECM; here, type-I collagen) surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM), which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication.

Conclusion/Significance

We demonstrated for the first time the modulation of HepG2 cells'' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.  相似文献   

4.
EglA, a β-1,4-glucanase isolated from the ruminal fungus Piromyces rhizinflata, shows promise in a wide range of industrial applications because of its broad substrate specificity. In this study, EglA was immobilized on different supporting materials including poly(dimethylsiloxane) (PDMS), Si wafer, textured Si wafer, and indium tin oxide-coated (ITO-coated) glass. The binding abilities of PDMS and Si wafer toward EglA were significantly higher than those of the other supporting materials. The optimized temperature and pH conditions for EglA immobilized on PDMS and on Si wafer were further determined by a response surface methodology (RSM) combined with a central composite design (CCD). The results indicated that the optimum pH and temperature values as well as the specific β-glucanase activity of EglA on PDMS were higher than those of free-form EglA. In addition, EglA immobilized on PDMS could be reused up to six times with detectable enzyme activity, while the enzyme activity of Eg1A on Si wafer was undetectable after three cycles of enzyme reaction. The results demonstrate that PDMS is an attractive supporting material for EglA immobilization and could be developed into an enzyme chip or enzyme tube for potential industrial applications.  相似文献   

5.
Tappura  K.  Luomahaara  J.  Haatainen  T.  Hassel  J.  Vehmas  T. 《Plasmonics (Norwell, Mass.)》2016,11(2):627-635

A set of periodic plasmonic nanostructures is designed and fabricated as a means to investigate light absorption in single-crystal silicon thin-film structures with silicon-on-insulator (SOI) wafers as a model system. It is shown both computationally and experimentally that plasmon-induced absorption enhancement is remarkably higher for such devices than for thick or semi-infinite structures or for the thin-film amorphous silicon solar cells reported in the literature. Experimental photocurrent enhancements of the orders of 12 and 20 are demonstrated for non-optimized 2200-nm-thick photoconductive and 300-nm-thick photovoltaic test structures, respectively. Theoretical absorption enhancements as high as 80 are predicted to be achievable for the similar structures. The features of the spectral enhancements observed are attributed to several interacting resonance phenomena: not just to the favourable scattering of light by the periodic plasmonic nanoparticle arrays into the SOI device layer and coupling to the waveguide modes interacting with the plasmonic array but also to the Fabry-Pérot type interferences in the layered structure. We show that the latter effect gives a significant contribution to the spectral features of the enhancements, although frequently ignored in the discussions of previous reports.

  相似文献   

6.
An array of individually addressable nanoplate field-effect capacitive (bio-)chemical sensors based on an SOI (silicon-on-insulator) structure has been developed. The isolation of the individual capacitors was achieved by forming a trench in the top Si layer with a thickness of 350 nm. The realized sensor array allows addressable biasing and electrical readout of multiple nanoplate EISOI (electrolyte-insulator-silicon-on-insulator) capacitive biosensors on the same SOI chip as well as differential-mode measurements. The feasibility of the proposed approach has been demonstrated by realizing sensors for the pH and penicillin concentration detection as well as for the label-free electrical monitoring of polyelectrolyte multilayers formation and DNA (deoxyribonucleic acid)-hybridization event. A potential change of ~ 120 mV has been registered after the DNA hybridization for the sensor immobilized with perfectly matched single-strand DNA, while practically no signal changes have been observed for a sensor with fully mismatched DNA. The realized examples demonstrate the potential of the nanoplate SOI capacitors as a new basic structural element for the development of different types of field-effect biosensors.  相似文献   

7.
Miniaturized microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed microfluidic chips featuring elastomeric polydimethylsiloxane (PDMS) microvalve arrays that: 1) need no extra energy source to close the fluidic path, hence the loaded device is highly portable; and 2) allow for microfabricating deep (up to 1 mm) channels with vertical sidewalls and resulting in very precise features.The PDMS microvalves-based devices consist of three layers: a fluidic layer containing fluidic paths and microchambers of various sizes, a control layer containing the microchannels necessary to actuate the fluidic path with microvalves, and a middle thin PDMS membrane that is bound to the control layer. Fluidic layer and control layers are made by replica molding of PDMS from SU-8 photoresist masters, and the thin PDMS membrane is made by spinning PDMS at specified heights. The control layer is bonded to the thin PDMS membrane after oxygen activation of both, and then assembled with the fluidic layer. The microvalves are closed at rest and can be opened by applying negative pressure (e.g., house vacuum). Microvalve closure and opening are automated via solenoid valves controlled by computer software.Here, we demonstrate two microvalve-based microfluidic chips for two different applications. The first chip allows for storing and mixing precise sub-nanoliter volumes of aqueous solutions at various mixing ratios. The second chip allows for computer-controlled perfusion of microfluidic cell cultures.The devices are easy to fabricate and simple to control. Due to the biocompatibility of PDMS, these microchips could have broad applications in miniaturized diagnostic assays as well as basic cell biology studies.  相似文献   

8.
The formation of individually addressable micropatterned solid-supported lipid bilayers has been accomplished by means of micromolding in capillaries. Small unilamellar vesicles were spread on glass slides to form planar supported membranes along microscopic capillaries molded as trenches into a polydimethylsiloxane (PDMS) elastomer. PDMS provides an elastic and transparent carrier for microcapillaries molded from silicon wafers displaying the desired inverse trenches. The so-called master structure has been conventionally etched into silicon by photolithography. The cured PDMS elastomer was briefly exposed to an oxygen plasma, rendering the surface hydrophilic, and subsequently attached to a glass surface in order to form hydrophilic capillaries equipped with flow-promoting pads on either side. One flowpad acts as a reservoir to be filled with the vesicle suspension, while the other one serves as a collector to ensure a sufficient capillary flow to cover the substrate completely. Formation of planar lipid bilayers on the glass slide along the capillaries was followed by imaging the flow and spreading of fluorescently labeled DMPC liposomes with confocal laser scanning microscopy. By means of scanning force microscopy in aqueous solution the formed lipid structures were identified and the height of the lipid bilayers was accurately determined. With both techniques, it was shown that the patterned bilayers remain separated and persist for several hours on the substrate in aqueous solution.  相似文献   

9.

Background

Precise spatial control and patterning of cells is an important area of research with numerous applications in tissue engineering, as well as advancing an understanding of fundamental cellular processes. Poly (dimethyl siloxane) (PDMS) has long been used as a flexible, biocompatible substrate for cell culture with tunable mechanical characteristics. However, fabrication of suitable physico-chemical barriers for cells on PDMS substrates over large areas is still a challenge.

Results

Here, we present an improved technique which integrates photolithography and cell culture on PDMS substrates wherein the barriers to cell adhesion are formed using the photo-activated graft polymerization of polyethylene glycol diacrylate (PEG-DA). PDMS substrates with varying stiffness were prepared by varying the base to crosslinker ratio from 5:1 to 20:1. All substrates show controlled cell attachment confined to fibronectin coated PDMS microchannels with a resistance to non-specific adhesion provided by the covalently immobilized, hydrophilic PEG-DA.

Conclusions

Using photolithography, it is possible to form patterns of high resolution stable at 37°C over 2 weeks, and microstructural complexity over large areas of a few cm2. As a robust and scalable patterning method, this technique showing homogenous and stable cell adhesion and growth over macroscales can bring microfabrication a step closer to mass production for biomedical applications.
  相似文献   

10.
An essential requirement for successful long-term coupling between neuronal assemblies and semiconductor devices is that the neurones must be able to fully develop their electrogenic repertoire when growing on semiconductor (silicon) substrates. While it has for some time been known that neurones may be cultured on silicon wafers insulated with SiO2 and Si3N4, an electrophysiological characterisation of their development under such conditions is lacking. The development of voltage-dependent membrane currents, especially of the rapid sodium inward current underlying the action potential, is of particular importance because the conductance change during the action potential determines the quality of cell-semiconductor coupling. We have cultured rat striatal neurones on either glass coverslips or silicon wafers insulated with SiO2 and Si3N4 using both serum-containing and serum-free media. We here report evidence that not only serum-free culture media but also growth on semiconductor surfaces may negatively affect the development of voltage-dependent currents in neurones. Furthermore, using surface-charge measurements with the atomic force microscope, we demonstrate a reduced negativity of the semiconductor surface compared to glass. The reduced surface charge may affect cellular development through an effect on the binding and/or orientation of extracellular matrix proteins, such as laminin. Our findings therefore suggest that semiconductor substrates are not entirely equivalent to glass in terms of their effects on neuronal cell growth and differentiation.  相似文献   

11.
Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.  相似文献   

12.
Perfusion culture of fetal human hepatocytes in microfluidic environments   总被引:1,自引:0,他引:1  
Various types of bioreactors composed of microstructured PDMS (Polydimethylsiloxane) layers have recently been fabricated for perfusion culture of mammalian cells such as adult rat hepatocytes. As a new feature of those bioreactors, in this study, cultivation of fetal human hepatocytes (FHHs) was attempted, because they have high possibility to mature in vitro with preserving their normality, which is suitable for inplantation of liver tissue equivalents reconstituted in vitro. During the perfusion culture in the PDMS bioreactors for 1 week, cells showed good attachment, spreading and reached their confluence over the channels. In addition, their albumin production was significantly enhanced in the perfusion culture using the PDMS bioreactors up to about four times during the FHH perfusion culture when compared in dish-level static culture. Hep G2 cell cultures were also performed and have also shown under perfusion conditions an enhanced cell activity multiplied by 2 compared to static conditions. Although, the cellular activities of FHH cells are still low even compared to those of the Hep G2 cells, the conclusions of this work is encouraging toward future liver tissue engineering based on in vitro propagation and maturation of hepatocyte progenitors combined with microfabrication technologies.  相似文献   

13.
Previous research into the use of Flame Hydrolysis Deposition (FHD) of glasses in integrated optics has focused on the successful commercial exploitation of low cost optical devices within the field of telecommunications and optoelectronics. Recently we have sought to apply these fabrication technologies to the development of optical biochips, utilising their ability to be integrated with microfluidics as a 'Lab-on-a-chip' platform. In this paper, we carry this development forward by seeking to create a microarray of integrated optical sensing elements, addressed using a glass-polymer hybrid technology in which poly(dimethylsiloxane), PDMS, is used as an elastomeric packaging over-layer. In particular, we describe the wide range of modelling and microfabrication processes required for the successful manufacture, integration and packaging of such arrays. The integration of both optical and fluidic circuits in this device avoids precise alignment requirements and results in a compact, robust and reliable device. Finally, in this paper, we describe the implementation of a pumping system for delivering small amounts of fluid across the array together with an optical signal treatment.  相似文献   

14.
The highly oxygen-permeable material, poly-dimethylsiloxane (PDMS), has the potential to be applied to cell culture microdevices, but cell detachment from PDMS has been a major problem. In this study, we demonstrate that a combination of collagen covalently immobilized PDMS and an adequate oxygen supply enables the establishment of a stable, attached spheroid (hemispheroid) culture of rat hepatocytes. The bottom PDMS surfaces were first treated with oxygen plasma, then coupled with aminosilane followed by a photoreactive crosslinker, and they were finally reacted with a collagen solution. X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that the covalent immobilization of collagen on the surface occurred only where the crosslinker had been introduced. On the collagen-conjugated PDMS surface, rat hepatocytes organized themselves into hemispheroids and maintained the viability and a remarkably high albumin production at least for 2 weeks of culture. In contrast, hepatocytes on the other types of PDMS surfaces formed suspended spheroids that had low albumin production. In addition, we showed that blocking the oxygen supply through the bottom PDMS surface inhibited the formation of hemispheroids and the augmentation of hepatocellular function. These results show that appropriate surface modification of PDMS is a promising approach towards the development of liver tissue microdevices.  相似文献   

15.
In in vivo liver tissue, each hepatocyte has intimate interactions not only with adjacent hepatocytes but also with nonparenchymal cells in a three-dimensional (3D) manner. We recently reported that hepatic function is highly maintained on collagen covalently immobilized poly-dimethylsiloxane (PDMS) membranes through which oxygen is supplied directly to the cells. In this study, to further enhance performances of hepatocytes culture, we investigated cocultivation of rat hepatocytes with a mouse fibroblast, NIH/3T3 (3T3) in the same PDMS membranes. Various functions of hepatocytes were better maintained on the membrane at remarkably higher levels, particularly albumin secretion on such coculture was about 20 times higher than that in conventional coculture on tissue-culture-treated polystyrene (TCPS) surfaces. The remarkable functional enhancements are likely to be explained by the net growth of hepatocytes (from 1.2- to 1.4-fold inoculated number) and very intimate contact between hepatocytes and 3T3 cells in almost continuous double-layered structures under the adequate oxygen supply. The results demonstrate that simultaneous realization of different requirements toward mimicking in vivo liver tissue microstructure is effective in improving performance of hepatocytes culture system.  相似文献   

16.
In this work, we develop low-cost microfluidic systems based on polydimethylsiloxane (PDMS) for lab-on-a-chip applications. PDMS microfluidic structures have been fabricated by micromolding, PDMS casting, and plasma bonding processes. The micromolding technique is used to fabricate PDMS slabs with micro-sized grooves, and the complete microchannel is formed by bonding PDMS slab with glass or PDMS substrate. The molding procedure using SU-8 photoresist patterning on silicon wafer, PDMS microchannel fabrication, and PDMS surface treatment using oxygen plasma and TiO2 coating, are discussed. The various parameters for oxygen plasma treatment including RF power and treatment time are studied in order to obtain conditions for good bonding with the glass substrate. The best condition for plasma treatment is found to be the low RF power (8 W) with 5 min treatment time. In addition, TiO2 coating with oxygen plasma treatment has been applied to make PDMS surface more hydrophilic to improve aqueous solution compatilbility. The microfluidic channels for various applications, including sample injection cross channel, micropump channel, T and Y sample mixers, PCR thermocyling chamber and channel, capillary electrophoresis flow channel, and conductimetric systems have been fabricated. Finally, a typical application of the PDMS chip in a flow injection conductimetric system for sodium chloride detection has been demonstrated.  相似文献   

17.
Molecular dynamics simulations are used to compute diffusion coefficients for O2 molecules in polydimethylsiloxane (PDMS) and end-linked PDMS networks. The PDMS chains and penetrants are modelled using a hybrid interatomic potential which treats the Si and O atoms along the chain backbone explicitly while coarse-graining the methyl side groups and penetrants. In PDMS models with different molecular weights, diffusivity of the O2 penetrants is found to modestly decrease with an increase in chain length. To match typical experimental conditions, the end-linked PDMS networks are constructed with a PDMS to crosslinking (CL) molecule mass ratio of 5:1 or 10:1, demanding that the number of CL molecules exceeds the number of PDMS chains in each model. Despite end-linking, the presence of non-bonded CL molecules promotes increased O2 diffusivity in comparison with uncrosslinked PDMS. Temperature dependence is captured using the Williams–Landel–Ferry equation.  相似文献   

18.
In this paper, we demonstrate in situ synthesis of oligonucleotide probes on poly(dimethylsiloxane) (PDMS) microchannels through use of conventional phosphoramidite chemistry. PDMS polymer was moulded into a series of microchannels using standard soft lithography (micro-moulding), with dimensions <100 μm. The surface of the PDMS was derivatized by exposure to ultraviolet/ozone followed by vapour phase deposition of glycidoxypropyltrimethoxysilane and reaction with poly(ethylene glycol) spacer, resulting in a reactive surface for oligonucleotide coupling. High, reproducible yields were achieved for both 6mer and 21mer probes as assessed by hybridization to fluorescent oligonucleotides. Oligonucleotide surface density was comparable with that obtained on glass substrates. These results suggest PDMS as a stable and flexible alternative to glass as a suitable substrate in the fabrication and synthesis of DNA microarrays.  相似文献   

19.
We report a novel strategy for micropatterned carbohydrate displays on Si substrates. This method exploited the hydrophobic-hydrophilic microfabrication by photolithography of ODS-SAM on Si substrates and the subsequent selective self-assembly of glycoconjugate polymers onto the hydrophobic regions. Protein micropatterning by molecular recognition on the carbohydrate substrates was also successful.  相似文献   

20.
As a novel therapeutic application of microfabrication technology, a micromachined membrane-based biocapsule is described for the transplantation of protein-secreting cells without the need for immunosuppression. This new approach to cell encapsulation is based on microfabrication technology whereby immunoisolation membranes are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 10 nm, tailored surface chemistries, and precise microarchitecture. Through its ability to achieve highly controlled microarchitectures on size scales relevant to living systems (from microm to nm), microfabrication technology offers unique opportunities to more precisely engineer biocapsules that allow free exchange of the nutrients, waste products, and secreted therapeutic proteins between the host (patient) and implanted cells, but exclude lymphocytes and antibodies that may attack foreign cells. Microfabricated inorganic encapsulation devices may provide biocompatibility, in vivo chemical and mechanical stability, tailored pore geometries, and superior immunoisolation for encapsulated cells over conventional encapsulation approaches. By using microfabrication techniques, structures can be fabricated with spatial features from the sub-micron range up to several millimeters. These multi-scale structures correspond well with hierarchical biological structures, from proteins and sub-cellular organelles to the tissue and organ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号