首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of proteolytic cleavage of myosin subfragment 1 were measured in the absence and presence of different amounts of actin. The rates of tryptic digestion at the 50K/20K junction and papain digestion at the 25K/50K junction of the myosin head were progressively inhibited with increasing substoichiometric molar ratios of actin to myosin subfragment 1. The percentage inhibitions of digestion reactions corresponded precisely to the molar compositions of actin-subfragment 1 solutions and demonstrated that equimolar complexes of these proteins were responsible for the observed changes in the proteolysis of myosin heads.  相似文献   

2.
3.
The initial rates of tryptic digestion at the 50/20-kDa junction in myosin subfragment 1 (S-1) were determined for free S-1, acto-S-1, and acto-S-1 in the presence of magnesium adenyl-5'-yl imidodiphosphate (Mg AMP-PNP) and MgATP under ionic strength conditions ranging from 30 to 124 mM. The percentage of S-1 bound to actin in the presence of Mg AMP-PNP and MgATP was calculated from these rates for each set of digestion experiments. Parallel experiments carried out in an Airfuge centrifuge on identical acto-S-1 solutions yielded independent information on the binding of S-1 to actin. The results of binding measurements by these two methods were in excellent agreement in all cases tested, covering the range from 15 to 95% binding of S-1 to actin. Tryptic digestions of synthetic mixtures of S-1 and p-phenylenedimaleimide S-1 in the presence of actin demonstrated that a two-component system of myosin heads with different affinities for actin can be resolved into its constituents by the proteolytic rates method. The results of this work justify applications of the proteolytic rates method to actomyosin binding studies in more complex systems.  相似文献   

4.
Nucleotide-induced states of myosin subfragment 1 cross-linked to actin   总被引:2,自引:0,他引:2  
A M Duong  E Reisler 《Biochemistry》1989,28(8):3502-3509
Actomyosin interactions and the properties of weakly bound states in carbodiimide-cross-linked complexes of actin and myosin subfragment 1 (S-1) were probed in tryptic digestion, fluorescence, and thiol modification experiments. Limited proteolysis showed that the 50/20K junction on S-1 was protected in cross-linked acto-S-1 from trypsin even under high-salt conditions in the presence of MgADP, MgAMPPNP, and MgPPi (mu = 0.5 M). The same junction was exposed to trypsin by MgATP and MgATP gamma S but mainly on S-1 cross-linked via its 50K fragment to actin. p-Phenylenedimaleimide-bridged S-1, when cross-linked to actin, yielded similar tryptic cleavage patterns to those of cross-linked S-1 in the presence of MgATP. By using p-nitrophenylenemaleimide, it was found that the essential thiols of cross-linked S-1 were exposed to labeling in the presence of MgATP and MgATP gamma S in a state-specific manner. In contrast to this, the reactive thiols were protected from modification in the presence of MgADP, MgAMPPNP, and MgPPi at mu = 0.5 M. These modifications were compared with similar reactions on isolated S-1. Experiments with pyrene-actin cross-linked to S-1 showed enhancement of fluorescence intensity upon additions of MgATP and MgATP gamma S, indicating the release of the pyrene probe on actin from the sphere of S-1 influence. The results of this study contrast the "open" structure of weakly bound actomyosin states to the "tight" conformation of rigor complexes.  相似文献   

5.
D Applegate  A Azarcon  E Reisler 《Biochemistry》1984,23(26):6626-6630
The method of limited tryptic proteolysis has been used to compare and contrast the substructure of bovine cardiac myosin subfragment 1 (S-1) to that of skeletal myosin S-1. While tryptic cleavage of cardiac S-1, like that of skeletal S-1, yields three fragments, the 25K, 50K, and 20K peptides, the digestion of cardiac S-1 proceeds at a 2-fold faster rate. The increased rate of cleavage is due entirely to an order of magnitude faster rate of cleavage at the 25K/50K junction of cardiac S-1 compared to that of skeletal, with approximately equal rates of cleavage at the 50K/20K junctions. Actin inhibits the tryptic attack at this latter junction, but its effect is an order of magnitude smaller for the cardiac than for the skeletal S-1. Furthermore, the tryptic susceptibility of the 50K/20K junction of cardiac S-1 in the acto-S-1 complex is increased in the presence of 2 mM MgADP. This effect is not due to partial dissociation of the cardiac acto-S-1 complex by MgADP. Our results indicate that in analogy to skeletal S-1, the cardiac myosin head is organized into three protease-resistant fragments connected by open linker peptides. However, the much faster rate of tryptic cleavage of the 25K/50K junction and also the greater accessibility of the 50K/20K junction in the cardiac acto-S-1 complex indicate substructural differences between cardiac and skeletal S-1.  相似文献   

6.
The effects of selected nucleotides (N) on the binding of myosin subfragment 1 (S-1) and pure F-actin (A) were measured by time-resolved fluorescence depolarization for 0.15 M KCl, pH 7.0 at 4 degrees. The association constants K'A, KN, and K'N in the scheme (see article), were determined for the magnesium salts of ADP, adenyl-5'-yl imidodiphosphate AMP-P(NH)P, and PPi. The nucleotide binding site on S-1 was "mapped" with respect to its interaction on the actin binding site. The subsites were the beta- and gamma-phosphoryl groups of ATP bind had the largest effects. A quantitative measure of the interaction, the interaction free energy, was defined as -RT ln (KA/K'A). For ADP, K'A was 2.7 X 10(5) M-1 and the interaction free energy was -4.67 kJ M-1. For AMP-P(NH)P and PPi it was much larger. A ternary complex was shown to exist for ADP, S-1, and actin in the presence of Mg2+ and evidence from AMP-P(NH)P and PPi measurements indicated that ATP also likely forms a ternary complex. The mechanism of (S-1)-actin dissociation is discussed in light of these results.  相似文献   

7.
We have characterized various structural and enzymatic properties of the (68K-30K)-S-1 derivative obtained by thrombic cleavage [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry (preceding paper in this issue)]. The far-ultraviolet CD spectra and thiol reactivity measurements indicated an unchanged overall polypeptide conformation of the enzyme whereas the CD spectra in the near-ultraviolet region suggested a local change in the environments of phenylalanine side chains; the latter finding was rationalized by considering the existence of about five of these amino acids in the vicinity of the cleavage sites. When the binding of Mg2+-ATP and Mg2+-ADP to the derivative was assessed by CD spectroscopy, distinct spectra were obtained with the two nucleotides as with native subfragment 1 (S-1), but some spectral features were unique to the nicked S-1. Stern-Volmer fluorescence quenching studies using acrylamide and the analogues 1,N6-ethenoadenosine 5'-triphosphate and 1,N6-ethenoadenosine 5'-diphosphate indicated that the complexes formed with the modified S-1 have a solute quencher accessibility close to that observed for the complexes with the normal S-1. However, in contrast to the parent enzyme, the thrombin-cut S-1 was unable to bind irreversibly Mg2+-ATP, nor did it form a stable Mg2+-ADP-sodium vanadate complex or achieve the entrapping of Mg2+-ADP after cross-linking of SH1 and SH2 with N,N'-p-phenylenedimaleimide. Additionally, the amplitude of the Pi burst was very low, indicating that the inactivation of the proteolyzed S-1 was linked to the suppression of the hydrolysis step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Chymotryptic subfragment 1 (S-1) prepared from rabbit skeletal myosin has lost its ATPase activity upon incubation at 35 degrees C for 3 h. The loss in ATPase activity was accompanied by the perturbation of the structure of the 50K domain as indicated by a dramatic increase in the tryptic susceptibility of this domain without any change in the susceptibility of the other domains of S-1. The perturbation starts at the C-terminal region of the domain as suggested by the appearance of a 29K intermediate protein band in the tryptic peptide pattern of the heat-treated S-1. The heat-treated molecule essentially retained its actin and polyphosphate binding ability, and the actin binding was still sensitive to the presence of ATP or pyrophosphate. However, as opposed to native S-1, in heat-treated S-1 the addition of ATP does not induce an increase in tryptophan fluorescence, and, in the case of the treated species, the fluorescence of 1,N6-ethenoadenosine 5'-diphosphate added to the mixture is quenchable by acrylamide. This latter observation suggests that the binding of the adenine ring of the nucleotide has been altered following the heat treatment. The results indicate that the actin and polyphosphate binding sites of S-1 are distinct and that they are relatively independent of the adenine ring binding site.  相似文献   

9.
10.
The binding of actin to myosin subfragment 1 (S1) has been shown to occur as a two-step reaction. In the first step actin is weakly bound and then the complex isomerizes to the "rigor type" acto-S1 complex (Coates, J. H., A. H. Criddle, and M. A. Geeves, 1985 Biochem. J., 232:351-356). We propose here a model in which troponin/tropomyosin (Tn/Tm) controls the actin-S1 interaction by inhibiting the isomerization step. In this model the (actin)7 Tn/Tm unit is assumed to exist in two states: open and closed. S1 can bind to either of the two states but only the open form allows the isomerization reaction to take place. We demonstrate that this model can account for the cooperative binding of S1 and S1 nucleotide complexes to actin. The model provides a way of integrating both the effects of calcium and nucleotide on actin-S1 interactions.  相似文献   

11.
D Schwyter  M Phillips  E Reisler 《Biochemistry》1989,28(14):5889-5895
Homogeneous preparations of actin cleaved into two fragments, the N-terminal 9- and C-terminal 36-kDa peptides, were achieved by proteolysis of G-actin with subtilisin at 23 degrees C at a 1:1000 (w/w) ratio of enzyme to actin. The subtilisin cleavage site was identified by sequence analysis to be between Met-47 and Gly-48. Although under nondenaturing conditions the two fragments remained associated to one another, the cleavage affected macromolecular interactions of actin. The rates of cleaved actin polymerization by MgCl2, KCl, and myosin subfragment 1 (S-1) were slower and the critical concentrations for this process were higher than in intact protein. Intact and cleaved actin formed morphologically indistinguishable filaments and copolymerized in the presence of MgCl2. The affinity of actin for S-1 was decreased by about 10-fold due to subtilisin cleavage, but the S-1 ATPase activity was activated to the same Vmax value by both intact and cleaved actins. DNase I inhibition measurements revealed lower affinity of cleaved actin for DNase I than that of intact protein. These results are discussed in terms of actin's structure.  相似文献   

12.
T Chen  D Applegate  E Reisler 《Biochemistry》1985,24(20):5620-5625
Chemical cross-linking of actin to the 20K and 50K fragments of tryptically cleaved myosin subfragment 1 (S-1) by the zero-length cross-linking reagent 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide (EDC) was used as a probe of the acto-S-1 interface in the presence of nucleotides. The course of the two reactions was monitored by measuring on sodium dodecyl sulfate (SDS)-polyacrylamide gels the time-dependent formation of the 20K-actin and 50K-actin cross-linked products. Both reactions were inhibited somewhat in the presence of MgADP, were slowed 3-4-fold in the presence of magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and proceeded at least 7-fold slower with N,N'-p-phenylenedimaleimide (pPDM) modified S-1, as compared to the respective rates in the absence of nucleotides. However, neither the binding of the nucleotides MgADP and MgAMPPNP to S-1 nor the modification of S-1 by pPDM significantly changed the ratio of the cross-linking rates of actin to the 20K and 50K fragments. Similar to what was previously observed in the absence of nucleotides [Chen, T., Applegate, D., & Reisler, E. (1985) Biochemistry 24, 137-144], actin was cross-linked at an approximately 3-fold faster rate to the 20K fragment than to the 50K fragment under all reaction conditions tested. Thus, irrespective of the extent of acto-S-1 dissociation or the binding of nucleotides to acto-S-1, the 20K fragment remains the preferred cross-linking site for actin. These results show that the interaction of actin with each of the cross-linking sites on S-1 is not under selective or preferential control by nucleotides.  相似文献   

13.
The ability of myosin subfragment 1 to interact with monomeric actin complexed to sequestering proteins was tested by a number of different techniques such as affinity absorption, chemical cross-linking, fluorescence titration, and competition procedures. For affinity absorption, actin was attached to agarose immobilized DNase I. Both chymotryptic subfragment 1 isoforms (S1A1 and S1A2) were retained by this affinity matrix. Fluorescence titration employing pyrenyl-actin in complex with deoxyribonuclease I (DNase I) or thymosin beta4 demonstrated S1 binding to these actin complexes. A K(D) of 5 x 10(-8) M for S1A1 binding to the actin-DNase I complex was determined. Fluorescence titration did not indicate binding of S1 to actin in complex with gelsolin segment 1 (G1) or vitamin D-binding protein (DBP). However, fluorescence competition experiments and analysis of tryptic cleavage patterns of S1 indicated its interaction with actin in complex with DBP or G1. Formation of the ternary DNase I-acto-S1 complex was directly demonstrated by sucrose density sedimentation. S1 binding to G-actin was found to be sensitive to ATP and an increase in ionic strength. Actin fixed in its monomeric state by DNase I was unable to significantly stimulate the Mg2+-dependent S1-ATPase activity. Both wild-type and a mutant of Dictyostelium discoideum myosin II subfragment 1 containing 12 additional lysine residues within an insertion of 20 residues into loop 2 (K12/20-Q532E) were found to also interact with actin-DNase I complex. Binding of the K12/20-Q532E mutant to the actin-DNase I complex occurred with higher affinity than wild-type S1 and was less sensitive to mono- and divalent cations.  相似文献   

14.
M Miki  T Hozumi 《Biochemistry》1991,30(22):5625-5630
A chemical modification of G-actin with (m-maleimidobenzoyl)-N-hydroxysuccinimide ester (MBS) impairs actin polymerization [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. MBS-actin recovers the ability to polymerize when a 2-fold molar excess of phalloidin is added in 30 mM KCl/2 mM MgCl2/20 mM Tris-HCl (pH 7.6). The resulting polymer (MBS-P-actin) is highly potentiated so that it activates the Mg(2+)-ATPase of S1 more strongly than native F-actin. The affinity of MBS-P-actin for S1 in the presence of ATP (KATPase) is about four times higher than that of native F-actin, although the maximum velocity at infinite actin concentration (Vmax) is almost the same. This high activation is not due to a cross-linking between MBS-P-actin and the S1 heavy chain, since no substantial amount of cross-linking was observed in SDS gel electrophoresis. Direct binding studies and ATPase measurements showed that the modification of actin with MBS impairs the binding of tropomyosin. Tropomyosin binding can be improved considerably by the addition of troponin. However, the regulation mechanism of the acto-S1 ATPase activity by troponin-tropomyosin is damaged. The addition of troponin-tropomyosin reduces the S1 ATPase activation by MBS-P-actin to the same level as that of native F-actin in 30 mM KCl/2.5 mM ATP/2 mM MgCl2, but there is no difference in the ATPase activation in the presence and absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
R Aguirre  F Gonsoulin  H C Cheung 《Biochemistry》1986,25(22):6827-6835
Isolated myosin heads (subfragment 1) were modified by covalent attachment of 5-(iodoacetamido)fluorescein or 5-(iodoacetamido)salicylic acid to the essential sulfhydryl group SH1. The extrinsic fluorescence of the modified proteins was sensitive to binding of nucleotides and F-actin. With the fluorescein derivative [subfragment 1 (S1) modified with 5-(iodoacetamido)fluorescein (IAF) at SH1 (S1-AF)], association with MgADP decreased the probe fluorescence by 30%, whereas binding to actin increased the emission by a factor of 2. In the ternary complex acto-S1-AF X MgADP, the effect of nucleotide on the intensity of the attached fluorescein canceled the effect of actin. The fluorescence state of this ternary complex was similar to that of S1-AF X MgADP. The emission of S1-AF was resolved into two components with lifetimes of 4.3 and 0.6 ns and relative contributions of 33% and 67%, respectively. Interaction of S1-AF with nucleotides and actin did not alter the lifetimes but significantly shifted their fractional contributions. Quenching studies showed that the short lifetime likely arose from the fluorescein moiety statically quenched by internal groups. Binding of MgADP to the salicylate derivative [S1 modified with 5-(iodoacetamido)salicylic acid at SH1 (S1-SAL)] induced a 25% enhancement of the probe fluorescence, whereas formation of acto-S1-SAL decreased the emission by 10% regardless of whether MgADP was bound to the protein. Both labeled S1 species bound MgADP with a similar affinity, comparable to that of unmodified S1 previously reported by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Skeletal muscle myosin is an enzyme that interacts allosterically with MgATP and actin to transduce the chemical energy from ATP hydrolysis into work. By modifying myosin structure, one can change this allosteric interaction and gain insight into its mechanism. Chemical cross-linking with N,N'-p-phenylenedimaleimide (pPDM) of Cys-697 to Cys-707 of the myosin-ADP complex eliminates activity and produces a species that resembles myosin with ATP bound (Burke et al., 1976). Nucleotide-free pPDM-modified myosin subfragment 1 (S1) was prepared, and its structural and allosteric properties were investigated by comparing the nucleotide and actin interactions of S1 to those of pPDM-S1. The structural properties of the nucleotide-free pPDM-S1 are different from those of S1 in several respects. pPDM-S1 intrinsic tryptophan fluorescence intensity is reduced 28%, indicating a large increase of an internal quenching reaction (the fluorescence intensity of the related vanadate complex of S1, S1-MgADP-Vi, is reduced by a similar degree). Tryptophan fluorescence anisotropy increases from 0.168 for S1 to 0.192 for pPDM-S1, indicating that the unquenched tryptophan population in pPDM-S1 has reduced local freedom of motion. The actin affinity of pPDM-S1 is over 6,000-fold lower than that of S1, and the absolute value of the product of the net effective electric charges at the acto-S1 interface is reduced from 8.1 esu2 for S1 to 1.6 esu2 for pPDM-S1. In spite of these changes, the structural response of pPDM-S1 to nucleotide and the allosteric communication between its ATP and actin sites remain intact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The preparation, structural and steady-state kinetic characteristics of contractile proteins from the leg muscle of frogs Rana temporaria and Rana pipiens are described. Actin and myosin from the two frog species are indistinguishable. The proteins have structural and steady-state kinetic properties similar to those from rabbit fast-twitch skeletal muscle. Chymotrypsin digestion of frog myosin or myofibrils in the presence of EDTA yields subfragment 1, which is separated by chromatography into two components that are distinguished by their alkali light-chain content.  相似文献   

18.
The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.0 mM magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP) and calculated that the ability of acto-S-1-AMPPNP complexes to cause potentiation must have been very similar to that of nucleotide-free acto-S-1 complexes. In extension of earlier studies, potentiated acto-S-1 ATPase activity was characterized by an increase in Vmax and, as observed before, a lowering of the apparent Km for subfragment 1 (S-1). Under conditions similar to those that produce the potentiation of acto-S-1 ATPase activity, the apparent actin binding constant of nucleotide-free S-1 was increased about 3-5 fold while the apparent binding constant of AMPPNP to actin-bound S-1 was reduced to (2.5-10) x 10(2) M-1 compared to that of about (1-5) x 10(3) M-1 for S-1 bound to tropomyosin-free actin. Under the same conditions, the apparent binding constant of S-1-AMPPNP to actin was not increased. We suggest that a potentiated state of the tropomyosin actin filament is produced by the cooperative action of acto-S-1 or acto-S-1-AMPPNP complexes. The potentiated state is characterized by an increase in the Vmax of the acto-S-1 ATPase activity, increased binding constants for S-1 and S-1-ADP, and increased binding of tropomyosin to actin.  相似文献   

19.
Tropomyosin (TM) is thought to exist in equilibrium between two states on F-actin, closed and open [Geeves, M. A., and Lehrer, S. S. (1994) Biophys. J. 67, 273-282]. Myosin shifts the equilibrium to the open state in which myosin binds strongly and develops force. Tropomyosin isoforms, that primarily differ in their N- and C-terminal sequences, have different equilibria between the closed and open states. The aim of the research is to understand how the alternate ends of TM affect cooperative actin binding and the relationship between actin affinity and the cooperativity with which myosin S1 promotes binding of TM to actin in the open state. A series of rat alpha-tropomyosin variants was expressed in Escherichia coli that are identical except for the ends, which are encoded by exons 1a or 1b and exons 9a, 9c or 9d. Both the N- and C-terminal sequences, and the particular combination within a TM molecule, determine actin affinity. Compared to tropomyosins with an exon 1a-encoded N-terminus, found in long isoforms, the exon 1b-encoded sequence, expressed in 247-residue nonmuscle tropomyosins, increases actin affinity in tropomyosins expressing 9a or 9d but has little effect with 9c, a brain-specific exon. The relative actin affinities, in decreasing order, are 1b9d > 1b9a > acetylated 1a9a > 1a9d > 1a9a > or = 1a9c congruent with 1b9c. Myosin S1 greatly increases the affinity of all tropomyosin variants for actin. In this, the actin affinity is the primary factor in the cooperativity with which myosin S1 induces TM binding to actin in the open state; generally, the higher the actin affinity, the lower the occupancy by myosin required to saturate the actin with tropomyosin: 1b9d >1a9d> 1b9a > or = acetylated 1a9a > 1a9a > 1a9c congruent with 1b9c.  相似文献   

20.
The cross-linking of actin to myosin subfragment 1 (S-1) with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide was reexamined by using two cross-linking procedures [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306; Sutoh, K. (1983) Biochemistry 22, 1579-1585] and two independent methods for quantitating the reaction products. In the first approach, the cross-linked acto-S-1 complexes were cleaved with elastase at the 25K/50K and 50K/22K junctions in S-1. This enabled direct measurements of the cross-linked and un-cross-linked fractions of the 50K and 22K fragments of S-1. We found that in all cases actin was preferentially cross-linked to the 22K fragment and that the overall stoichiometry of the main cross-linked products was that of a 1:1 complex of actin and S-1. In the second approach, actin was cross-linked to tryptically cleaved S-1, and the course of these reactions was monitored by measuring the decay of the free 50K and 20K fragments and the formation of cross-linked products. After selecting the optimal cross-linking procedure and conditions, we determined that the rate of actin cross-linking to the 20K fragment of S-1 was 3-fold faster than the reaction with the 50K peptide. The overall rate of cross-linking actin to S-1 corresponded to the sum of the individual reactions of the 50K and 20K fragments, indicating their mutually exclusive cross-linking to actin. Thus, the reactions with tryptically cleaved S-1 were consistent with the 1:1 stoichiometry of actin and S-1 in the main cross-linked products and verified the preferential cross-linking of actin to the 20K fragment of S-1. These results are discussed in the context of the binding of actin to S-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号