首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
常远  唐微 《生物化学杂志》1996,12(4):445-449
用自制的氨基PEG化试剂rIL-2进行化学修饰,研究了试剂浓度,溶液pH,反应时间间等与PEG-rIL-2产率及IL-2活性保持之间的关系,建立了一套获得稳定修饰度的PEG-rIL-2的方法,研究发现,反应时间跟修饰度关系不大;溶液pH对修饰度有一定的影响,中性pH以上反应都可进行;而试剂浓度直接决定修饰度的高低,过量越多,修饰度越高,而生物活性保留也越低;但低度修饰,对活性几乎没有影响,可保留活  相似文献   

2.
采用HPIEC应用CM交换柱分离纯化E.coli工程菌表达的rIL-2,与空气氧化复性相比较,又有1倍以上的变性rIL-2在色谱过程中得到复性,且溶液pH影响rIL-2的复性和纯化效果:pH7.0时rIL-2复性率高于pH8.0时,但纯度明显低于pH8.0时分离的rIL-2.  相似文献   

3.
重组人白细胞介素—2在离子色谱分离时的复性   总被引:1,自引:0,他引:1  
采用HPIEC应用CM交换柱分离纯化E.coli工程菌表达的rIL-2,与空气氧化复性相比较,又有1倍以上的变性rIL-2在色谱过程中得到复性,且溶液pH影响rIL-2的复性和纯化效果:pH7.0时rIL-2复性率高于pH8.0时,但纯度明显低于pH8.0时分离的rIL-2。  相似文献   

4.
分别用氰脲酰氯法及N-羟基丁二酰亚胺活性酯法合成了蛋白质的氨基PEG化试剂mPEGcc和mPEG-GS,并研究了它们对蛋白质的修饰作用。在合成过程中,通过分析反应体系中微量水分的存在对mPEGcc合成效率的影响,及溶剂中小分子可活化杂质成分对mPEG-GS合成产物质量的影响,发现去水剂的存在,可使mPEGce产率提高7倍;二氧六环优于DMF,且二氧六环的预处理也很重要。同时,为了测定活化PEG修饰蛋白质的效能,首次以BSA为模型蛋白,建立起一种测定活化PEG修饰能力的方法,应用此方法能直观而又准确地比较各种方法活化的PEG对蛋白质的修饰能力,具有普遍的意义。  相似文献   

5.
氨基PEG化试剂的合成及其修饰能力的测定   总被引:5,自引:0,他引:5  
常远  唐微 《生物化学杂志》1996,12(4):496-500
分别用氰脲酰氯法及N-羟基丁二酰亚胺活性酯法合成了蛋白质的氨基PEG化试剂mPEGcc和mPEG-GS,并研究了它们对蛋白质的修饰作用。在合成过程中,通过分析反应体系中微量水分的存在对mPEGcc合成效率的影响,及溶剂中小分子可活化杂质成分对mPEG-GS合成产物质量的影响,发现去水剂的存在,可使mPEGcc产率提高7倍;二氧六环优于DMF,且二氧六环的预处理也很重要。同时,为了测定活化PEG修饰  相似文献   

6.
采用共培养法和PEG法将外源基因导入绿豆下胚轴原生质体中,得到转化愈伤组织。根癌农杆菌经乙酰丁香酮等诱导物质以及低pH,低PO4^3-预培养后,细菌T-DNA的转移受到促进,GUS基因表达活性明显提高。在PEG介导的绿豆原生质体转化中,高Ca^2+/pH有利于外源DNA转移到植物细胞,GUS活性较高。此外,质粒DNA浓度和启动子类型均对外源基因的转移和表达有一定影响。  相似文献   

7.
活性氧与蛋白多糖的作用及损伤的蛋白多糖对矿化过…   总被引:3,自引:0,他引:3  
本文用凝胶色谱和琼脂糖-聚丙烯酰胺混俣凝胶电泳法比较地研究了活性氧和病区黄腐酸对氨基多糖和蛋白多糖作用,并用恒pH值法研究了完整和受损的PG对矿化的影响。结果表明:1,黄嘌呤-黄嘌呤氧化酶体系对GAG无明显降解作用,只损伤PG的核心蛋白。2,Fe(Ⅱ)-EDTA-H2O2体系同进损伤PG和GAG,并与H2O2浓度和作用时间正相关。3,FA不能直接降解GAG和PG。4,PG能推延磷酸钙成核的诱导期,  相似文献   

8.
紫云英细胞转化条件的研究   总被引:2,自引:0,他引:2  
研究了紫云英(AstragalussinicusL.)细胞遗传转化的条件。根癌农杆菌(Agrobacteriumtum efaciens)经含乙酰丁香酮的低pH/PO3-4 诱导培养后,用来感染紫云英下胚轴原生质体,随后的细胞GUS瞬间表达活性显著提高,间接证明了上述预培养诱导活化了细菌vir基因,促进了T-DNA 向植物细胞转移。在PEG介导的DNA 转移中,较高的pH 和Ca2+ 浓度能够提高细胞GUS活性。质粒DNA 浓度及启动子类型对外源基因在植物细胞内表达也有一定影响。采用外植体-农杆菌共培养法,获得GUS和NPT Ⅱ基因稳定表达的紫云英转化植株  相似文献   

9.
菜豆幼苗EPSP合成酶的分离纯化和它的部分性质   总被引:3,自引:0,他引:3  
利用硫酸铵分级沉淀,Sephedex G-50凝胶柱层析,FPLC Mono-Q和磷酸纤维素离子层析法从菜豆幼苗中分离提纯了EPSP合成酶。该酶被纯化2961.6倍,比活性达到6219.4nmolmg^-1蛋白min^-1。该酶分子量经SDS-PAGE检测为51kD,等电点为pH5.7,酶促反应最适pH7.5,最适温度45℃。6.2μmol/L的除草剂草甘膦能抑制EPSP合成酶活性的50%。  相似文献   

10.
PEG化蛋白质的分离纯化比较困难,本工作发现PEG化蛋白质仍能被硫酸铵盐析,据此可以简单地将IL-2及PEG化IL-2沉淀出来,而将有毒的活化PEG等副产物留在溶液中。此方法效果理想而又十分简便。文献中未见报道。此外,实验还发现,在PEG-IL-2与IL-2的混和液中加入一定量的PEG后,二者之间溶解度差别增大,当用SephacryⅠS-200柱分离时,先用含10%PEG,0.25mol/LNaCl的缓冲液平衡洗脱PEG-IL-2,再降低盐浓度洗下IL-2,即可使二者完全分开。过去要将IL-2与PEG-IL-2分离开非常困难,本工作解决了这个问题,这点亦未见文献报道。  相似文献   

11.
Efficacy of proteins can be enhanced by using polyethylene glycol (PEG) conjugation (PEGylation) to the protein molecules. Mobile non-toxic PEG chains conjugated to bio-therapeutics increase their hydrodynamic volume and in turn can prolong their plasma retention time and increase their solubility. An important aspect of PEGylation is the selection of PEG molecule with suitable structure and molecular weight. In this study, conceiving the idea that branched PEG-conjugates show superior efficacy over the linear PEG-conjugates, a tri-branched PEG-interferon (mPEG3L2-IFN) was synthesized by reacting a 30 KDa tri-branched mPEG3L2-NHS reagent with IFN to improve its pharmacokinetic properties and reduce the loss of in vitro bioactivity (which is generally exhibited by PEGylation) of the conjugated protein to some extent. The PEGylation procedure was optimized in terms of concentration and molar ratios of reactants, reaction time, temperature and pH conditions of the reaction mix. The conjugate was purified by cation exchange chromatography and characterized by SDS-PAGE and SE-HPLC. Trypsin digestion of mPEG3L2-IFN indicated a single site specificity of PEGylation. Anti viral bioactivity of mPEG3L2-IFN was found to be 2.38 × 107 IU/mg which is approximately 9.52% of native IFNα2 (2.5 × 108 IU/mg) and better than PEGasys from Roche Pharma. Therefore, it is reported that the tri-branched mPEG3L2-NHS reagent has the potential to be used to conjugate proteins for the promising therapeutic results.  相似文献   

12.
采用分子量为20 kD的单甲氧基聚乙二醇丙醛(mPEG-ALD)修饰重组人干扰素a-2b(IFN a-2b), 建立了修饰反应及分离纯化工艺。考察了修饰反应各因素对单修饰转化率以及单修饰产物体外活性的影响, 获得了优化的修饰反应条件, 即在pH 6.5, 20 mmol/L的磷酸氢二钠-柠檬酸缓冲溶液中, 干扰素a-2b的浓度为4 mg/mL, PEG与IFN a-2b的摩尔比为8:1, 4oC时反应20 h; 在优化的反应条件下, 单修饰PEG-IFN a-2b的转化率达到55%。并且, 采用离子交换层析对修饰产物进行分离纯化, 单修饰产品纯度达到97%, 体外活性保留达到未修饰干扰素a-2b的13.4%, 其在SD大鼠体内的循环半衰期得到了较大的延长, 且具有较好的水溶液稳定性。  相似文献   

13.
With the purpose of creating an active prolonged-release pharmaceutical substance, modification of the recombinant human granulocyte colony-stimulating factor G-CSF (filgrastim) with polyethylene glycol (PEG, molecular mass 21.5 kDa) has been performed. The method for the preparation of the filgrastim PEG derivative intended to develop and scale-up the technological manufacturing process is described. Protein modification with PEG was performed by selective covalent attachment of the ??-methyl-PEG-propionaldehyde molecule to the ??-amino group of the N-terminal of the methionine amino acid residue of the recombinant G-CSF. The selected reaction conditions provide no less than 85% product yield of the total protein, a high protein concentration in the reaction mixture (more than 9 mg/mL) and allow us to reduce PEG consumption on the protein terminal ??-amino group basis. RP HPLC and MALDI mass spectrometry data demonstrate that the preparation is modified by PEG at the N-terminal residue and contains no more than 10% of products with the higher degree of modification.  相似文献   

14.
Bovine liver rhodanese (thiosulphate sulphurtransferase, EC 2.8.1.1) is modified by 2,4,6-trinitrobenzenesulphonic acid, by the use of modifying agent concentrations in large excess over enzyme protein concentration. The end-point of the reaction, viz., the number, n, per enzyme protein molecule, of modifiable amino groups was determined graphically by the Kézdy-Swinbourne procedure. It was found that the value for n depends on the pH of the reaction medium, and ranges from 2, at pH 7.00, to 10.66, at pH 9.00. Again, the value for n increases with an increase in the concentration of 2,4,6-trinitrobenzenesulphonic acid used, with values ranging from 3.52, at 0.10 mM modifying agent, to 8.96, at 2 mM modifying agent. Rhodanese primary amino groups modification by 2,4,6-trinitrobenzenesulphonic acid is described by a summation of exponential functions of reaction time at pH values of 8.00 or higher, while at lower pH values it is described by a single exponential function of reaction time. However, the log of the first derivative, at initial reaction conditions, of the equation describing protein modification, is found to be linearly dependent on the pH of the reaction. An identical linear dependence is also found when the log of the first derivative, at the start of the reaction, of the equation describing modification-induced enzyme inactivation is plotted against the pH values of the medium used. In consequence, the fractional concentration of rhodanese modifiable amino groups essential for enzyme catalytic function is equal to unity at all reaction pH values tested. It is accordingly concluded that, when concentrations of 2,4,6-trinitrobenzenesulphonic acid in excess of protein concentration are used, all rhodanese modifiable amino groups are essential for enzyme activity. A number of approaches were used in order to establish a mechanism for the modification-induced enzyme inactivation observed. These approaches, all of which proved to be negative, include the possible modification of enzyme sulfhydryl groups, disulphide bond formation, enzyme inactivation due to sulphite released during modification, modification-induced enzyme protein polymerization, syncatalytic enzyme modification and hydrogen peroxide-mediated enzyme inactivation.  相似文献   

15.
A new coloured reagent for protein modification, alpha-bromo-4-amino-3-nitroacetophenone (NH2BrNphAc), was synthesized. The reagent was found to alkylate specifically the methionine-290 residue of porcine pepsin below pH 3 at 37 degrees C, which lead to a 45% decrease of enzyme's activity towards haemoglobin. The effect of this reagent as well as that of other phenacyl bromides on the activity of pepsin appeared to be a result of steric hindrance caused by the attachment of bulky reagent residue to the edge of the cleft harbouring the enzyme active site. Only marginal reaction with the co-carboxy group of aspartic acid-315 was found under the above conditions. More pronounced esterification of carboxy groups (up to one residue per enzyme molecule) occurred when the pH was shifted to 5.2. The latter modification had no noticeable effect on enzyme activity, thus disproving a previously held assumption that pepsin inactivation by phenacyl bromide is due to the carboxy-group esterification. alpha-Bromo-4-amino-3-nitroacetophenone forms derivatives with characteristic u.v. spectra when it reacts with methionine, histidine, aspartic and glutamic acid residues, and may be recommended as a reagent for protein modification.  相似文献   

16.
Photooxidation of bovine liver glutamate dehydrogenase (GDH, EC 1.4.1.3) in the presence of methylene blue at a low light intensity occurs in two stages. At the first stage, the duration of which depends on temperature and dye concentration, a slight activation is observed simultaneously with the oxidation of two histidine residues. At the second stage, the inactivation is concomitant with the oxidation of three histidine and one tryptophan residues. The inactivation is a first order reaction (k = 3,22 X 10(-2) min-1) and is correlated with changes in the circular dichroism spectra. These data testify to the structural role of histidine residues in the GDH molecule. The kinetic behaviour of GDH during its modification with diethylpyrocarbonate (DEP) depends on pH and the reagent concentration. Four histidine residues undergo carbethoxylation at pH 6.0 and 7.5, but the modification rate is much higher at pH 7.5. At low DEP concentrations, a remarkable activation is observed with a simultaneous modification of one histidine residue, which is independent of pH. At high DEP concentrations, a rapid inactivation takes place at pH 7.5. Treatment of the carbethoxylated inactive enzyme with hydroxylamine results in the deacylation of histidine residues without any noticeable reactivation. The data on the combined effect of DEP and pyridoxal-5'-phosphate suggest that GDH inactivation by DEP at pH 7.5 is a result of modification of an essential epsilon-NH2 group of lysine-126.  相似文献   

17.
Monoclonal antibodies against glutamic acid decarboxylase (anti-GAD) were modified with poly(ethylene glycol) (PEG), and the resulting conjugates were characterized. Monoclonal anti-GAD antibodies were purified from ATCC HB184 hybridoma cells by either cell culture supernatant or ascites fluid from BALB/c mice. Polyclonal rabbit IgG antibodies were also used as a model protein. Polyclonal rabbit IgG or purified anti-GAD was modified by PEG (MW = 5000 or 20000 Da) through either the lysine residues or through the carbohydrate moiety. Lysine modification was performed in PBS (pH 7.4) or 0.1 M borate (pH 9.2) by adding a molar excess (5-80) of a succinimidyl activated propionic acid terminated mPEG (SPA-PEG) while stirring at room temperature. Carbohydrate modifications were performed in PBS (pH 6.2) by first oxidizing the antibody with sodium periodate followed by incubation with hydrazide-terminated PEG followed by reduction with sodium cyanoborohydride. The degree of modification was assessed by 1H NMR or TNBS (trinitrobenzenesulfonic acid). Circular dichroism (CD) spectra were obtained for lysine-modified rabbit IgG at various degrees of modification ranging from 5 to 60 PEG per antibody. Binding was assessed using an ELISA method with GAD or rabbit anti-mouse-IgG (H+L) coated plates. The TNBS and 1H NMR analysis of the modified antibody showed reasonably similar results from 5 to 60 PEG per antibody. The 1H NMR method showed greater sensitivity at low modifications (below 20:1) and was fairly linear up to about 60 PEG per antibody. The CD spectra of the polyclonal rabbit IgG showed only small differences at variously modified antibody. The binding affinity of anti-GAD is lower for all PEG modifications with respect to unmodified anti-GAD. Modifications at pH 7.4 show lower binding to GAD than modifications at pH 9.2. Binding to GAD or anti-mouse-IgG is decreased as the degree of modification is increased. Lysine modifications showed lower binding to GAD or anti-mouse-IgG than carbohydrate modifications. Binding to GAD or anti-mouse-IgG is lower for PEG20000-modified anti-GAD with respect to PEG5000-modified anti-GAD.  相似文献   

18.
To improve the therapy efficacy of recombinant hirudin variant-2 (HV2), its PEGylation was investigated using linear mPEG-succinimidyl carbonate (mPEG-SC) and branched mPEG2-N-hydroxysuccinimide (mPEG2-NHS). The reaction mixtures of PEGylation were analyzed by RP-HPLC and the mono-PEG-HV2 products were purified by anion exchange chromatography (IEC). Effects of linear and branched PEG on the hydrolysis kinetics of the PEG reagent, the PEGylation kinetics of HV2 and the in vitro and in vivo bioactivity of mono-PEG-HV2 were investigated. The RP-HPLC and IEC analyses showed that linear and branched PEG-HV2 with identical molecular weight had different chromatographic behaviors. The reaction kinetics showed that branched mPEG2-NHS displayed higher hydrolysis rate but lower PEGylation rates than linear mPEG-SC. Consequently, HV2 conjugated with mPEG2-NHS required a greater molar ratio of PEG to HV2 than that of mPEG-SC to achieve the identically desired yield of mono-PEG-HV2. The in vitro and in vivo bioactivities of mono-PEG-HV2 showed that branched PEG-HV2 had higher therapeutic efficacy than linear PEG-HV2 with identical molecular weight. The in vivo bioactivity of mono-B-PEG40k-HV2 (mono-PEG-HV2 derived from 40 kDa branched mPEG2-NHS) had a markedly longer duration in rabbits than did unmodified HV2, which showed its potential to be developed as a candidate antithrombotic drug.  相似文献   

19.
A guinea pig liver transglutaminase (G-TGase)-mediated procedure for the site-specific modification of chimeric proteins was recently reported. Here, an alternative method with advantages over the recent approach is described. This protocol utilizes a microbial transglutaminase (M-TGase) instead of the G-TGase as the catalyst. M-TGase, which has rather broad structural requirements as compared to the G-TGase, tends to catalyze an acyl transfer reaction between the gamma-carboxamide group of a intact protein-bound glutamine residue and various primary amines. To demonstrate the applicability of the M-TGase-catalyzed protein modification in a drug delivery system, we have utilized recombinant human interleukin 2 (rhIL-2) as the target protein and two synthetic alkylamine derivatives of poly(ethyleneglycol) (PEG12; MW 12 kDa) and galactose-terminated triantennary glycosides ((Gal)(3))) as the modifiers. For the M-TGase-catalyzed reaction with PEG12 and (Gal)(3), 1 mol of alkylamine was incorporated per mole of rhIL-2, respectively. Peptide mapping of (Gal)(3)-modified rhIL-2 ((Gal)(3)-rhIL-2) by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS) suggested that the Gln74 residue in rhIL-2 was site specifically modified with (Gal)(3). The PEG12-rhIL-2 and (Gal)(3)-rhIL-2 conjugates retained full bioactivity relative to the unmodified rhIL-2. In pharmacokinetic studies, PEG12-rhIL-2 was eliminated more slowly from the circulation than rhIL-2, whereas (Gal)(3)-rhIL-2 accumulated in the liver via hepatic asialoglycoprotein receptor binding. The results of this study expand the applicability of the TGase-catalyzed methodology for the preparation of protein conjugates for clinical use.  相似文献   

20.
The mPEG-aldehyde PEGylation with two different PEG sizes and two proteins was experimentally determined with respect to yield, conversion, and selectivity. The kinetic behavior of these PEGylation reactions was simulated using a numerically solved set of differential equations. We show that the assumption of an inactivation of mPEG-aldehyde is crucial for the simulation of the overall PEGylation and that the inactivation is pH-dependent. We further demonstrate that ideal PEGylation parameters such as pH, temperature, reaction time, and protein concentration need to be chosen carefully depending on the protein and PEG size. In terms of selectivity and yield, we show that the reaction should be stopped before the highest mono-PEG concentration is reached. Moreover, room temperature and a slightly acidic pH of approximately 6 are good starting points. In conclusion, selectivity can be optimized choosing a shorter reaction time and a reduced reaction temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号