首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of leech swimming activity by the cephalic ganglia   总被引:2,自引:0,他引:2  
We investigated the role played by the cephalic nervous system in the control of swimming activity in the leech, Hirudo medicinalis, by comparing swimming activity in isolated leech nerve cords that included the head ganglia (supra- and subesophageal ganglia) with swimming activity in nerve cords from which these ganglia were removed. We found that the presence of these cephalic ganglia had an inhibitory influence on the reliability with which stimulation of peripheral (DP) nerves and intracellular stimulation of swim-initiating neurons initiated and maintained swimming activity. In addition, swimming activity recorded from both oscillator and motor neurons in preparations that included head ganglia frequently exhibited irregular bursting patterns consisting of missed, weak, or sustained bursts. Removal of the two head ganglia as well as the first segmental ganglion eliminated this irregular activity pattern. We also identified a pair of rhythmically active interneurons, SRN1, in the subesophageal ganglion that, when depolarized, could reset the swimming rhythm. Thus the cephalic ganglia and first segmental ganglion of the leech nerve cord are capable of exerting a tonic inhibitory influence as well as a modulatory effect on swimming activity in the segmental nerve cord.  相似文献   

2.
The caudal ganglion of the leech, which provides sensory and motor innervation to the posterior sucker, represents the fusion of seven embryonic segmental ganglia. Although fused, each of the seven contributing ganglia (“subganglia”) of the caudal ganglion can be distinguished morphologically and functionally. The roots from each subganglion carry the axons of mechanoreceptors homologous to “touch” cells found in the segmental ganglia and the subesophageal compound ganglion. The receptive fields supplied by the touch cells of the caudal ganglion are uniquely arranged and reveal the modified segmentation of the circular posterior sucker. Extensive overlap of sensory innervation occurs between adjacent segments of the sucker, beyond the overlap characteristic of the homologous cells of body segments. It thus appears that the touch receptors of the caudal ganglion are less restricted than receptors of the segmental ganglia with regard to their territories of innervation. The caudal ganglion has additional unique properties that establish it as a distinct integrative center of the leech CNS.  相似文献   

3.
We studied the steps in the formation of the bipolar outgrowth pattern of cultured adult Anterior Pagoda (AP) neurons of the leech growing on a central nervous system (CNS) homogenate as substrate. This pattern, which consists of two primary neurites directed in opposite directions plus some bifurcations, resembles their embryonic pattern but is different from the patterns they develop in culture on leech laminin or Concanavalin A as substrates. In eight neurons that were studied, one primary neurite formed and branched several hours before the second one. Time-lapse video analysis showed that between 12 and 36 h of growth, the more proximal branch of the early neurite migrated retrogradely, rotated, and formed the second primary branch. Both neurites elongated until the total neurite length reached 130-160 microm, when the elongation of primary neurites became synchronous with the retraction of secondary processes, suggesting competition. The substrate dependence of these events was tested by plating AP neurons on leech laminin. On this substrate AP neurons produced multiple independent primary neurites with branches. Retraction of some large branches was followed by their regrowth, and did not correlate with the changes in other neurites. We propose that the dynamics in the formation of the bipolar outgrowth pattern of AP neurons arise from inhibitory extracellular matrix molecules, which reduce the synthesis of precursors for neurite formation.  相似文献   

4.
The presence and distribution of immunoreactivity to the cyclic AMP response element binding protein (CREB) were determined in the central nervous system (CNS) and in peripheral tissues of the medicinal leech Hirudo. Western blots revealed several CREB-immunoreactive (CREB-IR) bands including one whose molecular weight (43–44 kDa) was similar to mammalian CREB. The 43–44 kDa CREB-like protein was detected in nuclear extracts of the ventral nerve cord and was not observed following preincubation of the primary antiserum with the epitope sequence. CREB-like immunoreactivity was detected in extracts from each of six regions of the leech CNS, and in extracts from leech body wall musculature, crop, intestine, jaw musculature, pharynx, and salivary tissues. Whole mounts of leech ganglia revealed specific CREB-IR in a restricted population of neurons distributed throughout the leech CNS. Apparent homologues to a pair of CREB-IR dorsolateral neurons were observed in most ganglia along the ventral nerve cord. Several CREB-IR neurons exhibited segmental specificity. A number of neurons stained with an antiserum to the cyclic AMP response element modulator (CREM). These neurons showed no overlap in location with CREB-IR neurons, and this staining was not eliminated with a preabsorption control. Possible roles for a CREB-like protein in the leech are discussed. Electronic Publication  相似文献   

5.
We describe the application of three-dimensional collagen matrices to the study of nerve cord repair in the leech. Our experiments show that ganglia and connectives of the leech ventral nerve cord can be maintained for up to four weeks embedded in 3D gels constructed from mammalian type I collagen. Severed nerve cords embedded in the collagen gel reliably repaired within a few days of culture. The gel was penetrable by cells emigrating from the cut ends of nerves and connectives, and we consistently saw regenerative outgrowth of severed peripheral and central axons into the gel matrix. Thus, 3D gels provide an in vitro system in which we can reliably obtain repair of severed nerve cords in the dish, and visualize cell behaviour underlying regenerative growth at the damage site: and which offers the possibility of manipulating the regenerating cells and their extracellular environment in various ways at stages during repair. Using this system it should be possible to test the effect on the repair process of altering expression of selected genes in identified nerve cells.  相似文献   

6.
7.
We studied the steps in the formation of the bipolar outgrowth pattern of cultured adult Anterior Pagoda (AP) neurons of the leech growing on a central nervous system (CNS) homogenate as substrate. This pattern, which consists of two primary neurites directed in opposite directions plus some bifurcations, resembles their embryonic pattern but is different from the patterns they develop in culture on leech laminin or Concanavalin A as substrates. In eight neurons that were studied, one primary neurite formed and branched several hours before the second one. Time‐lapse video analysis showed that between 12 and 36 h of growth, the more proximal branch of the early neurite migrated retrogradely, rotated, and formed the second primary branch. Both neurites elongated until the total neurite length reached 130–160 μm, when the elongation of primary neurites became synchronous with the retraction of secondary processes, suggesting competition. The substrate dependence of these events was tested by plating AP neurons on leech laminin. On this substrate AP neurons produced multiple independent primary neurites with branches. Retraction of some large branches was followed by their regrowth, and did not correlate with the changes in other neurites. We propose that the dynamics in the formation of the bipolar outgrowth pattern of AP neurons arise from inhibitory extracellular matrix molecules, which reduce the synthesis of precursors for neurite formation. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 106–117, 2002; DOI 10.1002/neu.10017  相似文献   

8.
To assess the generality of our previous finding (Gao and Macagno, 1987) that segmental homologues play a role in the establishment of the pattern of axonal projections of the heart accessory HA neurons, we have extended our studies to two other identified leech neurons: the anterior pagoda (AP) neurons and the annulus erector (AE) motor neurons. Bilateral pairs of AP neurons are found in the first through the twentieth segmental ganglia (SG1 through SG20) of the leech ventral nerve cord. All AP neurons initially extend axonal projections to the contralateral periphery as well as longitudinal projections along the contralateral interganglionic connective nerves toward anterior and posterior neighboring ganglia. Although the peripheral projections are maintained by all AP neurons throughout the life of the animal, the longitudinal projections disappear in all but two segments: the AP neurons in SG1 maintain their anterior projections and extend them into the head ganglion, and those in SG20 maintain their posterior projections and extend them into SG21 and the tail ganglion. When single AP neurons are deleted anywhere along the nerve cord before processes begin to atrophy, however, the longitudinal projections are retained by their ipsilateral homologues in adjacent ganglia. The rescued processes appear to take over the projections of the deleted neurons. In cases where two or more AP neurons on the same side of the nerve cord are deleted from adjacent ganglia, a contralateral homologue sometimes extends projections to the periphery ipsilaterally or on both sides. We obtained similar results when we deleted single AE neurons from midbody ganglia. Thus, our experiments with three different identified neurons consistently show that the initial pattern of projections is the same in all ganglia, but that the existence of homologues in adjacent ganglia leads to the pruning of some of the initial projections. A consequence of this homologue-dependent process retraction is that neurons normally lacking neighboring homologues will have patterns of projections different from those neurons that do have such neighbors. Process loss by the HA, AP, and AE neurons may be the result either of competition for targets, inputs, or growth factors or of direct interactions among homologous cells.  相似文献   

9.
1. Proteins of different regions of the Hirudo medicinalis central nervous system have been analyzed by means of two-dimensional electrophoresis. 2. Subcellular distribution of phosphoproteins has been studied in leech segmental ganglia. 3. Phorbol 12,13-dibutyrate, a protein kinase C activator, stimulates the phosphorylation of a number of proteins whose isoelectric points and mol. wts are presented. 4. Putative roles for these phosphoproteins are discussed.  相似文献   

10.
Salivary gland secretion (SGS) of the medicinal leech Hirudo medicinalis in summer and winter was studied by proteomic analysis methods, and season-associated difference was found in the distribution of fractionated proteins with the same pattern of their positions. Differences were detected for proteins with molecular weights from 15 to 250 kD fractionated by two-dimensional SDS-PAGE and for 2-10- and 10-60-kD proteins analyzed by SELDI-MS. Thirty-two and 20 proteins were detected by MALDI-TOF-MS in the high-molecular-weight fraction of the summer and winter SGS, respectively, isolated from the corresponding two-dimensional electrophoregrams, and this was less than 20% of the total SGS protein. The N-terminal amino acid sequences were determined for 12 proteins. The peptide maps and N-terminal amino acid sequences of the proteins studied were identified, and no known proteins were revealed. These findings suggest a high content of newly revealed proteins in SGS of medicinal leech, and this correlates with multiple positive clinical effects of hirudotherapy realized through SGS, but the mechanisms of these effects remain unclear.  相似文献   

11.
In embryonic development of the leech Helobdella triserialis, each of the four paired positionally identifiable, ectodermal teloblasts (N, O, P, and Q) generates a bandlet of blast cell progeny that merges with ipsilateral bandlets into a germinal band. Left and right germinal bands coalesce into the germinal plate which gives rise to the segmental tissues of the leech and wherein the progeny of each teloblast generate a characteristic pattern of epidermal and neuronal cells. Experiments reported here show that the positionally identified O teloblast sometimes generates the P pattern and vice versa. The reversal of these teloblasts' generative identities was shown to correspond to the formation of chiasmata by their blast cell bandlets, so that the positions of their bandlets in the germinal band are reversed as well. Thus it is the position of the bandlet in the germinal band, rather than the position of the parent teloblast, which correlates with the fate of o and p blast cells. Moreover, two types of ablation experiments have shown that, in the absence of generative P teloblast progeny, those cells which would normally generate the O pattern take on a new fate and give rise to the P pattern in the nervous system, both at the gross pattern level in the segmental ganglia, and at the level of identified neurons in the peripheral nervous system. If related, these phenomena suggest that the O and P teloblasts, which derive from the symmetric cleavage of the OP proteloblasts, have a common developmental pluripotency. And in that case, the fates of their progeny are determined hierarchically on the basis of relative position in the nascent germinal band, with P-type fate being preferred.  相似文献   

12.
Individual mechanosensory neurons in the leech segmental ganglia were eliminated in vivo by intracellular Pronase injection. 7-20 days later Lucifer Yellow was injected into mechanosensory neurons of the same modality in isolated ganglia. There was a clear evidence of retraction of neuronal processes. It is suggested that the leech nervous system structure is not necessarily fixed and can be changed after the death of individual neurons.  相似文献   

13.
ht-en protein, an annelid homolog of the Drosophila engrailed protein, is expressed during both early development and neurogenesis in embryos of the leech, Helobdella triserialis. In Helobdella as in Drosophila, early expression is in segmentally iterated stripes of cells within the posterior portion of the segment and later expression is in cells of the segmental ganglia. These findings suggest that dual expression of an en-class gene was present in a common ancestor of annelids and arthropods.  相似文献   

14.
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.  相似文献   

15.
—Previous workers have reported that the colossal cells of Retzius in the segmental ganglia of the medicinal leech contain about 2.3 pmol of 5-hydroxytryptamme (5-HT)/cell body. We verify the identify of 5-HT in the Retzius cells by gas chromatography-mass spectrometry and derive concentrations of 1.3–4.1 pmol/neuron by analyses of eight individually dissected Retzius cell bodies. The Retzius cell bodies contain about 30% of the 5-HT in each ganglion. An average of 25 pmol 5-HT/mg tissue, a concentration about 500 times lower than that in the Retzius cell, was found in the fibrous, pigmented tissue surrounding the leech nervous system. We could not detect γ-aminobutyric acid, octopamine, dopamine or norepinephrine in the Retzius cells, in the pigmented tissue, or, with the possible exception of dopamine (±0.4 pmol/ganglion), in whole ganglia. Furthermore, we could not detect 5-HT in pooled samples of 100 non-chromaffin control neurons.  相似文献   

16.
The leech Helobdella sp. (Austin) has two genes of the Pax6 subfamily, one of which is characterized in detail. Hau-Pax6A was expressed during embryonic development in a pattern similar to other bilaterian animals. RNA was detected in cellular precursors of the central nervous system (CNS) and in peripheral cells including a population associated with the developing eye. The CNS of the mature leech is a ventral nerve cord composed of segmental ganglia, and embryonic Hau-Pax6A expression was primarily localized to the N teloblast lineage that generates the majority of ganglionic neurons. Expression began when the ganglion primordia were four cells in length and was initially restricted to a single cell, ns.a, whose descendants will form the ganglion’s anterior edge. At later stages, the Hau-Pax6A expression pattern expanded to include additional CNS precursors, including some descendants of the O teloblast. Expression persisted through the early stages of ganglion morphogenesis but disappeared from the segmented body trunk at the time of neuronal differentiation. The timing and iterated pattern of Hau-Pax6A expression in the leech embryo suggests that this gene may play a role in the segmental patterning of CNS morphogenesis.  相似文献   

17.
We have recently isolated a myoactive peptide, called leech excitatory peptide, belonging to the GGNG peptide family from two species of leeches, Hirudo nipponia and Whitmania pigra. Immunohistochemistry and in situ hybridization were employed to localize leech excitatory peptide-like peptide(s) and its gene expression in the central nervous system of W. pigra. A pair of neuronal somata were stained by both immunohistochemistry and in situ hybridization in the supraesophageal, subesophageal, and segmental ganglia. In addition, several other neurons showed positive signals by either immunohistochemistry or in situ hybridization in these ganglia. An immunoreactive fiber was observed to run in the anterior root of segmental ganglion 6, which is known to send axons to the sexual organs, though we failed to detect immunoreactivity in possible target tissues. Antiserum specificity was established by enzyme-linked immunosorbent assay using different leech excitatory peptide-related peptides. Leech excitatory peptide elicited muscular contraction of isolated preparations of penis and intestine at concentrations of 10(-8 )M. These results suggest that leech excitatory peptide is a neuropeptide modulating neuromuscular transmission in multiple systems, including regulation of reproductive behavior.  相似文献   

18.
Segmental specialization of neuronal connectivity in the leech   总被引:2,自引:1,他引:1  
1. Every segmental ganglion of the leech Hirudo medicinalis contains two serotonergic Retzius cells. However, Retzius cells in the two segmental ganglia associated with reproductive function are morphologically distinct from Retzius cells elsewhere. This suggested that these Retzius cells might be physiologically distinct as well. 2. The degree of electrical coupling between Retzius cells distinguishes the reproductive Retzius cells; all Retzius cells are coupled in a non-rectifying manner, but reproductive Retzius cells are less strongly coupled. 3. Retzius cells in standard ganglia depolarize following swim motor pattern initiation or mechanosensory stimulation while Retzius cells in reproductive ganglia either do not respond or hyperpolarize. 4. In standard Retzius cells the depolarizing response caused by pressure mechanosensory neurons has fixed latency and one-to-one correspondence between the mechanosensory neuron action potentials and Retzius cell EPSPs. However, the latency is longer than for most known monosynaptic connections in the leech. 5. Raising the concentration of divalent cations in the bathing solution to increase thresholds abolishes the mechanosensory neuron-evoked EPSP in standard Retzius cells. This suggests that generation of action potentials in an interneuron is required for production of the EPSP, and therefore that the pathway from mechanosensory neuron to Retzius cell is polysynaptic. 6. P cells in reproductive segments have opposite effects on reproductive Retzius cells and standard Retzius cells in adjacent ganglia. Thus the difference in the pathway from P to Retzius is not localized specifically in the P cell, but elsewhere in the pathway, possibly in the type of receptor expressed by the Retzius cells.  相似文献   

19.
《Gene》1999,227(1):11-19
We have isolated two α-tubulin cDNAs from the leech, Hirudo medicinalis. Both encode putative proteins of 451 amino-acids which differ from each other at only two positions. Southern blotting suggests that there are only two α-tubulin genes in the leech. The genes contain two introns and, because of the extremely high homology of the nucleotide sequence from the second intron to the end of the genes, we have inferred that a gene conversion event about 9.5 million years ago has homogenised the Hirudo α-tubulin sequences. Using in situ hybridisation to tissue sections, we have shown that the two genes are probably expressed in all neurons of the leech ganglia and that their spatial distribution remains unchanged during neuronal regeneration. The deduced amino-acid sequences of the leech α-tubulins show that they have greatest similarity to those from a platyhelminth, echiuran and mollusc with rather less to arthropod α-tubulins. The protein sequences of the leech α-tubulins have been compared with representatives of those from across all phyla to determine if any specific feature labels certain isotypes of tubulin for neuronal expression.  相似文献   

20.
Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10–100 s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号